Engineering
Complex
Systems

with
Models and Objects

David W. Oliver
Timothy P. Kelliher
James G Keegan, Jr.

McGraw-Hill

New York San Francisco Washington, D.C. Auckland Bogata
Caracas Lisbon Madrid Mexico City Milan
Montreal New Delhi San Juan

Singapore Sydney Tokyo Toronto

Acknowledgments

We're indebted to those who helped us through the difficult and arduous
process of completing this book.

Margaret Kelliher helped greatly with our organization and, without
her, we wouldn't have completed the first chapter.

Julian Holtzman reviewed drafts of the manuscript and provided
thoughtful insight.

The support, encouragement and patience of our wives; Diane,
Margaret, and Mary has been invaluable.

We are indebited to people and places that have shaped our carrers.
For Dave thisincludes the technical and management experience pro-
vided by GE Corporate Research and Development Center, training at
the GE Crotonville ingtitute, and the practices and example set by exem-
plary management, particularly Hubbard Horn, John Eshbach, Virgil
Stout, and William Chu. For Tim, whose career is also at GE's Corporate
Research Center, thisincludes Dave McGonagle who gave him a chance
to get started and a direction to head. It aso includes many othersthat he
has met at GE and elsewhere along the way. For Jim, William Premerlani
and Will Schroeder offered their personal experiences which helped
compl ete the book.

To Diane
--dwo

To Margaret, Katherine, and Colleen
--tpk

To May
~-jgk

Table of Contents

Introduction 17

11

12

13

14

15

16

17
1.8
1.9

The Engineering of Complex Systems Based on Models 17
1.1.1 ThisBook 17

1.1.2 SystemsEngineering as aDiscipline 18
Importance of Engineering Complex Systems 20
1.2.1 Globa Economic and Technical Change 20
The Gap 21

1.3.1 Closing the Gap 22

Definitions 24

141 Science25

1.4.2 Engineering 25

143 Modd 25

144 System 25

145 Behavior 26

14.6 Structure 26

14.7 Context 26

1.4.8 Optimization 26

Basic Abstractions 27

15.1 Basic Abstractions Used with Structure 27
15.2 Basic Abstractions used with Behavior 29
Organization of this Book 30

16.1 Principles of Modeling 30

16.2 AnExample of Modeling 31

Summary 31

Exercises 32

References 33

Basics of Structure 35

21

22
23

Introduction to Structure 35

2.1.1 Structure and Behavior 35

2.1.2 Basic Viewsof Structure 37

2.1.3 Executable Models of Structure 38

Example - Modeling a Pocket Knife 41

Objects and Classes 41

2.3.1 Definition 41

2.3.2 Modeling Objectsin OMT 42

2.3.3 Example- Pocket Knife, Object Class Definition 45

Table of Contents Y,

2.3.4 Example - Pocket Knife Instances 46
2.4 Aggregation 47
24.1 Modeing Aggregationin OMT 47
24.2 Example - Pocket Knife with Aggregation 48
25 Cardinallity 53
251 CardindlityinOMT 53
25.2 Example54
2.6 Classification of Objects 55
26.1 Classficationin OMT 56
2.6.2 Example- Classification of Tools 57
2.7 Interconnection of Objects 60
2.7.1 Definition 60
2.7.2 Interconnectionin OMT 61
2.7.3 Example- Multi-Tool Pocket Knife Context 61
2.7.4 Example- Multi-Tool Assembly Interconnection 63
2.8 Roles63
2.9 Allocation of Functionsto Objects 64
2.10 Summary 65
2.11 Exercises 66
2.12 References 66

Basics of Behavior 67

3.1 Introduction to Behavior 67
3.1.1 Elementsof Behavior 67
3.1.2 Behavior in the System Context 68
3.1.3 This Chapter 69
3.2 Modeling of Behavior 69
3.3 Functional Flow Block Diagrams 70
3.3.1 Functions 70
3.3.2 Ordering 71
3.3.3 Example, Pocket Knife 74
3.34 Hierarchy 75
3.3.5 Input and Output 77
3.4 DataFlow Diagrams 81
3.5 Representation of Behavior as State 82
3.6 Pocket Knife Example, Summary 85
3.7 Information Model for Behavior 85
3.7.1 Behavior 86
3.7.2 Input/Output 87
3.7.3 Function 87
3.7.4 Control Operations 88

Table of Contents

38

39

3.7.5 InSummary 88

Information Model for Input/Output 88
Relationship of Behavior and Structure 91
3.9.1 Structure Models 91

3.9.2 Behavior Models 93

3.10 Models and Text for Requirements/Specifications 93
3.11 Summary for Behavior 94

3.12 Exercises 95

3.13 References 96

Core Technical Process 97

41

4.2

4.3

44
45
4.6
4.7
4.8

Process 97
4.1.1 Process, Methodology, and Tools 98

4.1.2 Product Life Cycle, Acquisition, Systems Engineering Process

100
4.1.3 The Systems Engineering Process Model 103
The Core Technical Process 107
421 The Six Stepsin the Core Technical Process 108
Hierarchy 114
431 Small Systemsvs. Large Systems 114
4.3.2 Tiersof Hierarchy 114
4.3.3 Hierarchy, Waterfal, Top Down Development 118
Re-Engineering 119
Behavior Model for the Core Technical Process 119
Union of Best Practice with Modeling 120
Exercises 121
References 122

Assess Available Information 123

51
52

53

54
55
5.6

What Core Step 1 1s123

A Reqguirements Taxonomy 124

5.21 Classification by Origin 126

5.2.2 Classification by the Work Needed to be Done 127
5.2.3 Classification by Their Use 129

A Behavior for Assess Available Information 132

5.3.1 Decomposition of the Behavior of Core Step 1 132
Summary 135

Exercises 135

References 137

Table of Contents

vii

viii

Define Effectiveness Measures 139

6.1
6.2
6.3
6.4

6.5
6.6
6.7
6.8
6.9

What Core Step 2 1s 139

Importance of Effectiveness Measures 139
An Industrial Example 141

How Effectiveness Measures Drive the Solution 142
6.4.1 Problem: System 1143

6.4.2 Problem: System 2 145

6.4.3 Problem: System 3 146

Types of Effectiveness Measures 148
Priorities among Effectiveness Measures 148
Information Model for Core Step 2. 150
Summary 153

Exercises 154

6.10 References 155

Create Behavior Model 157

7.1
7.2
7.3

7.4
7.5

7.6
7.7
7.8
7.9

What Core Step 3 1s 157

How to Create Behavior Models 158

Example of Behavior Development - Bottling Wine 160

7.3.1 External System Behavior 161

7.3.2 Tempora Performance Requirements 162

7.3.3 Non-temporal Performance Requirements 162

7.3.4 Operations Concept for System Context 163

7.3.5 Behavior of the Winemaker 163

7.3.6 Effectiveness Measures 164

7.3.7 Intrinsic Behavior 164

7.3.8 Emergent Behavior 167

7.3.9 Completing the Behavior - Adding Inputs and Outputs 169
7.3.10 Views of Behavior 170

7.3.11 Behavior, Structure, and Effectiveness Measures 174
Scenarios and Response Threads as Paths through Behavior 175
Behavior, Context and Traceability, an Information Model 176
7.5.1 Explanation of the Context Region 176

7.5.2 Explanation of the Behavior Region 178

7.5.3 Explanation of Traceability and Budgeting 178
Pitfallsin Developing Scenarios and Threads 179

Summary 180

Exercises 180

References 181

Table of Contents

10

Create Structure Model 183

8.1
8.2
8.3

84
8.5
8.6

8.7
8.8
8.9

What Core Step 4 1s183

Creating Structure Models 183

Example of Structure Development - Bottling Wine 186
8.3.1 Requirements Review 186

8.3.2 TheFirst Parts Selection, Define Objects 187
8.3.3 TheFirst Parts List or Aggregation 188

8.3.4 Allocate Functions 189

8.3.5 Interfaces Among People 193

Information Model for Structure 193

Architecture and Design 195

Architecture, Applications, Effectiveness Measures and Reuse 198
8.6.1 Design Simplification with Architecture 199
Summary 199

Exercise 200

References 201

Perform Trade-Off Analysis 203

9.1
9.2

9.3
94

9.5
9.6

What Core Step 5 1s 203

Trade-off 204

9.21 Vauesof Attributes 204

9.2.2 Survey 206

9.2.3 Cadculate System Performance 206
9.2.4 Iterate 206

9.25 Cadculate System Effectiveness 206
9.2.6 Other Alternatives 207

9.2.7 Display System Effectiveness 207
9.2.8 Choose Alternative Structure 207
Information Model 207

The Problem of Tool Integration 210

9.4.1 Prerequisitesfor Tool Integration 210
9.4.2 A Comparison with Mechanical Engineering Evolution 211
Exercises 213

References 215

Create Build and Test Plan 217

10.1 What Core Step 6 15217
10.2 Creating aPlan 218

10.2.1 Network Scheduling Approaches 219

Table of Contents

11

12

10.2.2 Resource Allocation 220
10.3 Behavior Model for Core Step 6 220
10.4 Information Model for Core Step 6 222
10.5 A Check-off List for Planning Plan 224
10.6 Exercises 226
10.7 References 227

Concept Analysis 229

11.1 What Concept Analysis|s 229
11.2 Applying the Core Technical Processto Concept Analysis 231
11.3 Core Steps Applied to the Context of the Bank with the ATM Systemn 232
11.3.1 Assess Available Information 232
11.3.2 The Three Concurrent Core Steps, 2, 3, and 4 236
11.4 Core Steps Applied to the Bank with the ATM System 241
11.4.1 Structure of the Bank with the System, Core Step 4.5 241
11.4.2 Effectiveness Measure For Bank with the System, Core Step 2
244
11.4.3 Behavior of the Bank with the ATM System, Core Step 3 245
11.4.4 Trade-off Anaysisof the Bank withthe ATM System, Core Step
5246
11.4.5 Create the Sequential Build and Test Plan, Core Step 6 249
11.5 Summary 250
11.6 Exercises 250
11.7 References 251

System Analysis 253

12.1 What System Analysis Is 253
12.2 Core Steps Applied to the Context of the ATM System 253
12.2.1 Assess Available Information, Core Step 1 254
12.2.2 The Three Concurrent Core Steps, 2, 3, and 4 254
12.2.3 Effectiveness Measure For Bank with the System, Core Step 2
254
12.2.4 Structure of the Context of the ATM System, Core Step 5 255
12.2.5 EffectivenessMeasurefor the ATM System Context, Core Step 2
257
12.2.6 Behavior of the Thief in the Context of the ATM System, Core
Step 3 257
12.3 Core Steps Applied to the ATM System 259
12.3.1 Structure of the ATM System, Core Step 5 259
12.3.2 Behavior of the ATM System, Core Step 3 260

Table of Contents

13

14

15

12.3.3 Structure Implications of the Theft Scenarios, Core Step 4 265
12.3.4 Response of ATM Machineto ATM Customer 268
12.3.5 Structure of the ATM Machine and Related Objects, Core Step 5
271
12.4 Exercises 272
12.5 References 273

Sub-system Analysis 275

13.1 What Sub-system Analysis s 275

13.2 Core Steps Applied to the Context of the ATM Machine 276

13.3 Core Steps Applied to the ATM Machine 278
13.3.1 Effectiveness Measure for the ATM machine, Core Step 2 278
13.3.2 Structure of the ATM Machines, Core Step 5 279

13.4 Exercises 287

13.5 References 287

Hand-off 289

14.1 What Hand-off 1s 289

14.2 Context For Handoff 290

14.3 ATM Handoff to User Interface 292
14.3.1 Assess Available Information 294
14.3.2 Paralel Design Steps 295

14.4 Separation to Database 301
14.4.1 Available Database Information 301
14.4.2 Behavior and Structure of ATM database 302

14.5 Hand-off 306

14.6 Exercises 306

14.7 References 306

Interface with Acquisition and Management 307

15.1 Introduction 307
15.2 Introduction of Modeling into Business Cultures 307
15.3 Commercial Product/Service Development Businesses 309
15.4 Modeling and Aerospace Acquisition 312
15.4.1 Relativity of Systems, Products 314
15.4.2 A Core Technical Systems Engineering Process 314
15.4.3 Requirements Come from the Tier Above 315
15.4.4 P1220 Systems Engineering Process 316
15.5 Summary 318

Table of Contents Xi

16

15.6 Exercises 319
15.7 References 320

Choosing Methodology 321

16.1 Tailoring Meta-process to Methodology 321

16.2 Best Practices and Views of Information 322

16.3 Views of Information in Systems Engineering 323
16.3.1 Possible Views of Structure 323
16.3.2 Possible Views of Behavior 325
16.3.3 Equivalences - Statechart and Functional Flow Block Diagrams

326

16.4 Some Methodology Problems and Differences 328

16.5 Discovery and the Change Control Process 328
16.5.1 The Change Control Process Description 329
16.5.2 Changeto the System, Upper Branch 331
16.5.3 Process Improvement 332

16.6 Concluding Remarks 333

16.7 Exercises 334

16.8 References 334

17 A Collection of Process and Information Models 335

Xii

Table of Contents

List of Figures

Behavior and Structure 36

Description of Structure: The Elemental Views 37
Ordinary Pocket Knife 41

Ordinary Pocket Knife 41

Class Definition Box 42

Instance Diagram 45

Initial Class Definition for Pocket Knife 45

Severa Instances of Pocket Knife 47

Aggregation Used to Model the Structure of the Universe 48
Pocket Knife Disassembled 49

Part Tree for Pocket Knife 50

Part Tree for Six Tool Pocket Knife 52

Cardinallity and Conditions Expressed in OMT 54
Part Tree for Six Tool Pocket Knife with Cardinallity 55
Classification Tree for Pocket Knife 56
Types of Toolsfor Class Tool 58

Multi-Tool Pocket Knife Family 59
A Context of Multi-Tool Pocket Knife 62

Assembly Interconnections for Metal Knife Case 63
Structural Context of Multi-Tool Pocket Knife 69
FFBD Notation for Functions 71

FFBD Depiction of Sequence 71

Representations of Concurrency in FFBDs 72
Representations of Selection in FFBDs 73

Iteration in FFBDs 74

FFBD for Person Using Pocket Knife 75

Hierarchy representation in FFBDs 76

Lower Level FFBD Diagram 76

FFBD Diagram for Pocket Knife 77

Behavior Diagram for Pocket Knife 78

Behavior Diagram for Person Using Pocket Knife 79
Behavior Diagram for Pocket Knife in its context 80
Input-Output Diagram for Person 81

Data Flow Elements for Pocket Knife Context 82
Statesin Statecharts 84
FFBD for Pocket Knife recast as a Statechart 84
Information Model for Behavior 86
Information Model for Input/Output 89

Behavior and Structure Information Model 92
Assaciations of Meta-Process, Methodology, Tools, and Infrastructure 99
Part List for System Engineering Process 100
Assaociations of Process, Product Life Cycle and Acquisition 101

List of Figures Xiii

Xiv

Extended Part List for System Engineering Process 104

Model for the System Engineering Process 106

FFBD View for the System Engineering Core Technical Process 108
Sequential Application of Core Technical Process to Context and Subject

113

Behavior Model for the System Engineering Core Technical Process 120
Associations of Available Information 125

Classification of Text Requirements 126

Information Model for Requirements 131

Functional Flow Block Diagram Decomposition of Core Step 1 133
Context for Systems Engineering 140

Behavior of Three Independently Concurrent Functions 142
Timeline 143

System 1 built from Object R 144

Six near Optimal Behaviors 144

System 2.1 built from Three Object R's 145

System 3 Built from Two Object R's 146

Behavior of System 3 147

Classification of Effectiveness Measures 143

Information Model for Create Effectiveness Measures 151

FFBD View of Define Effectiveness Measures, Core Step 2 152
Two Resources 154

FFBD View of Core Step 3 158
Context Diagram for Bottling Wine 161

Behavior of the Winemaker 163
Top Level FFBD for Bottling Wine 165

Gathering Supplies For Bottling Wine 165

Fill the Bottles for Bottling Wine 166

Completed Functional Flow Block Diagram, Bottling Wine 167
Modified Functional Flow Block Diagram, Bottling Wine 168
Top Level behavior for Bottling Wine 169
Second Level Behavior for Bottling Wine 170

Data Flow Diagram for Bottling Wine 171

Reformatted Data Flow Diagram for Bottling Wine 172

Revised Functional Flow Block Diagram 173

Information Model for Text Requirements, Behavior, and Context 177
FFBD View of Core Step 4 184

Top Level Selection among Objects 187

First Parts List for Manual Wine Bottling System 188

Modified Functional Flow Block Diagram, Bottling Wine 189
Allocation to Three People 191

Information Model for Text Requirements, Structure, and Context 194
FFBD View of Core Step 5 204

Information Model for Perform Trade-off Analysis 209

FFBD View of Core Step 6 221

Information Model for Core Step 6 223

List of Figures

Tiers of Analysis and Decomposition/Synthesis 229
FFBD View for the System Engineering Core Technical Process 231
Initial Structure of Bank Context 237
Structure for Individual Customer 239
View of Behavior of Individual Customer 240
Structure of the Bank 242
Classes of Bank 243
The Teller 244
View of Behavior of Individual Customer Using the ATM System 245
View of Behavior of the ATM System 246
Kinds of ATM Machines 248
Context of ATM System 255
Kinds of Thief 257
Behavior of Cabinet Cracker 258
View of Behavior of Mugger 258
View of Behavior of ATM Customer 259
Sub-systems of ATM System 260
View of System Behavior 261
ATM Machine 262
ATM Machine Revised 265
Classification of Secure Locations 266
Kinds of ATM Machines, Modified 267
Behavior of ATM Machine 269
Associationswith ATM Machine 271
View of System Behavior 276
View of Response of ATM Machineto Thief 277
Kinds of ATM Machines, Modified 280
ATM Machines, Parts List and Associations 282
Theft Protection LRU 283
The Components as Objects with Attributes and Functions 284
LRU Objects 285
The Five ATM Machines 286
Interconnection Diagram 286
Structure Diagram for ATM Software Architecture 291
View of ATM Machine Software Behavior 292
User Interface Related Behavior of ATM Machine. 293
Behavior of Display Start Instruction 296
Structure of User Interface Components 297
User Interface mock-up displaying the start instruction 298
User Interface mock-up prompting for a transaction selection 298
Fragments of executable code produced by user interface mock-up tool 300
View of ATM machine database behavior 302
View of ATM machine database structure 304
Automatically Generated C++ Database Declarations 305
Typical P1220 System-Part Breakdown 313
Renaming of P1220 System-Part Breakdown 315

List of Figures XV

XVi

The P1220 System Engineering Process 317

Possible Views of Behavior and Structure 324

Statesin Statecharts 326

FFBD View of Core Technical Steps 327

Statechart View of Core Technical Steps 327

FBBD View of the Change Control Process 330
Semantics and Symbols for Executable Structure 335

Information Model for Behavior 336

Information Model for Input/Output 337

Behavior and Structure Information Model 338

Associations of Meta-Process, Methodology, Tools, and Infrastructure 339
Associations of Process, Product Life Cycle and Acquisition 340
Model for the System Engineering Process 341

FFBD View for the System Engineering Core Technical Process 342
Sequential Application of Core Technical Process to Context and Subject

342

Functional Flow Block Diagram Decomposition of Core Step 1 343
FFBD View of Define Effectiveness Measures, Core Step 2 344
FFBD View of Core Step 3 345

FFBD View of Core Step 4 345

FFBD View of Core Step 5 346

FFBD View of Core Step 6 347

Information Model for Requirements 348
Context for Systems Engineering 349

Information Model for Create Effectiveness Measures 350
Information Model for Text Requirements, Behavior, and Context 351
Information Model for Text Requirements, Structure, and Context 352
Information Model for Perform Trade-off Analysis 353

Information Model for Core Step 6 354

Tiers of Analysis and Decomposition/Synthesis 355

List of Figures

Introduction

1

Introduction

1.1 The Engineering of Complex Systems Based on Models

People as toolmakers have developed systems for thousands of years and have devel-
oped techniques for coordination of large efforts. In atimespan shorter than asingle
career, the complexity of systems and the pervasiveness of computers and software
have increased so much that production of modern systems demands the application
of awide range of engineering and manufacturing disciplines. The many engineering
and manufacturing specialties that must cooperate on a project no longer understand
the other speciaties. They often use different names, notations, and views of informa:
tion even when describing the same concept. Yet, the products of the many disci-
plines must work together to meet the needs of users and buyers of systems. They
must perform as desired when all of the components are integrated and operated.

1.1.1 This Book

This book describes how to combine text descriptions and rigorous modeling to ana-
lyze and describe large or small complex systems. The systems engineering work
begins with the needs of users, owners, and operators and with the redlities of the
marketplace. The systems engineering work transforms these needs into a description
of asystem architecture and design that specifies the components to be designed,
implemented and integrated. The fundamental process for the engineering of systems
is an optimization process. That process finds a hear optimal solution for the system
out of amultitude of possible solutions. The process produces rigorous descriptions
of the near optima sol ution by defining what the components are, what they must do,
and how they interact to perform as a system. This book focuses on the technical
engineering work of transforming needs to a near optimal system solution for com-
plex systems that require multiple engineering disciplines to do the work. The
approach isasynthesis of proven systems engineering best practices with the rigor of
information transformations. The basic abstractions and processes required are
described. The resulting meta-process description for systems engineering work is
highly tailorable to organization need and culture.

To develop any complex system, ateam of engineers, working at the system
level, must analyze the needs of the users, operators, and owners. The systems team
must give to the many design, engineering, and manufacturing disciplines arigorous

17

Introduction

description and specification of the system and the components that are to be pro-
duced. These descriptions must be provided in the representations, terminology, and
notations used by the different design disciplines. They must also be unambiguous,
complete, and mutually consistent such that the components will integrate to provide
the desired emergent behavior for the system. When the product is completed and
offered for sale, its emergent behavior must match the needs of customers so well that
they will choose to buy and useit.

The systems team must al so describe the emerging system to the interested
stakeholders - management, marketing, users, owners, operators, and acquisition
authorities. These stakehol ders are the decision makers for funding development and
for purchase of product or service. These system descriptions must effectively address
the concerns of the stakeholdersin form, language, and level of detail useful to them.
These system descriptions will be less detailed than those provided to design, engi-
neering and manufacturing disciplines.

Onethesis of this book is that modeling results in higher quality systems,
designed and produced at lower cost and in a shorter time, with a better fit to the mar-
ket. A second thesis of the book is that with modeling the system specification can be
executed to show what will occur and can be transformed efficiently and rigorously
into the several different languages and forms useful to both the system stakeholders
and to the design, engineering, and manufacturing disciplines. A third thesis of the
book is that with the same modeling applied to systems engineering itself you get a
well defined discipline, improved capability to train, and essential definitions needed
for building automation and infrastructure for efficient and creative systems engineer-
ing. These definitions are consistent with the best practices and standards devel oped
over many years and augment them with executable models.

Thereis amanagement role in the engineering of systems, to provide a systems
view for scheduling and management of resources, and a systems view for the resolu-
tion of the technical issuesthat arise. This book discusses these management tasks to
separate them clearly from the technical tasks of systems engineers. The mgjor focus
of the book, however, is on the technical work and how to accomplish thisrigorously.
Systems engineering management is described in detail in the selected references
(Blanchard and Fabrycky 1990) and (Defense Systems Management College 1990).

1.1.2 Systems Engineering as a Discipline

18

The development of modern complex systems requires engineers from several disci-
plines and also engineering generalists. In some industries, such as aerospace, the
engineers focusing on the front end definition of the system are called systems engi-
neers. Thisjob function is taught as a separate discipline in a growing number of uni-
versities. In other businesses engineers with these front end responsibilities are called
by many different names and their work may or may not be recognized as a distinct
discipline. Recognized or not, it isacritically important because it:

Introduction

» Matches the product to the marketplace
» Defines the components so the designers can be design and built them
» Determines most of the design choices affecting system cost and performance

» Ensures that the components will integrate successfully and perform together
asrequired

» Providesspecificationsfree of errors, since errors are very expensiveto correct
in the latter stages of design and production.

It must, therefore, accurately reflect atotal system design that is both feasible and
effective in component design. In addition, the system design must be not only cor-
rect but also unambiguous. If not then the components will not integrate correctly and
the desired emergent behavior will be compromised. Failure to do thiswork, up front,
causes the system to cost more than was budgeted, miss its market window, and have
an increased chance of marketplace product failure.

Where does system engineering end? Design of the components is the responsi-
bility of the engineering expertsin the disciplines: mechanical engineering, software
engineering, database engineering, civil engineering and the like. Implementation of
these components is the responsibility of manufacturing, building construction, and
others. Design of the total package of componentsincluding their interrelationshipsis
the domain of the systems engineer. Of course what one company considersto be a
component another treats as a system.

This book describes a process for combining rigorous modeling with text
descriptions to analyze and describe:

1. user needs
2. the system to meet those needs, and
3. the components to be designed and built

Following this process |eads to a near optimal system solution. This fundamental pro-
cess for the engineering of complex systems is an optimization process. It finds a
near-optimal solution out of a plethora of possible solutions. It produces rigorous
descriptions of the near optimal solution by defining what the components are, what
they must do, and how they interact as a system. The process draws on the best prac-
tices of systems engineers and combines these with modern modeling techniques.
Together these produce a rigorous method by which to design complex systems.

19

Introduction

1.2

Importance of Engineering Complex Systems

There are economic and technical changes sweeping the globe that make systems
engineering critically important to the industrialized nations and their peoples. There
is also adeadlock, an impasse, which the art of systems engineering faces and which
presently limits its contributions.

1.2.1 Global Economic and Technical Change

20

In earlier times goods and payments passed across regulated national borders, but pro-
duction facilities, knowledge, and culture remained within those borders as a national
competitive advantage. At present there is an aimost instantaneous movement of
ideas, information, key people, and capital across national borders. Productive capac-
ity can be quickly established anywhere there is an economic advantage. It is possible
to have high technology, high productivity, high quality, and low wages (Schwab and
Smadja 1994). Thisisatrans-national phenomenon. It is occurring across nations
where regions are working together to define markets and make investment by inter-
national companies most attractive, (Thurow 1992), (Krugman 1994). Europe is mov-
ing toward atrading block. Hong K ong has embraced Shenzen and the Zhu River
delta of China. Maaysia has become aworld leading producer of semiconductors and
is now discouraging labor intensive industry. Indonesia, Malaya, and Thailand are
linking their cities of Medan, Penang, and Phuket. Taiwan, Japan and K orea are mov-
ing productive capacity to China and Vietnam. The United States and India are pro-
ducing software cooperatively.

To remain competitive global companies are relocating design and production
wherever it is advantageous to produce goods and to maintain rel ationships for selling
goods (Krugman 1994), (Ohmae 1995). Major globa companies are increasingly
opening their top management and boards of directors to candidates from all nations
(Reich 1991). Thisisbeginning to occur even in nationalistic Japanese companies and
family oriented Chinese companies. Global businesses which do not follow these eco-
nomic imperatives are likely to wither. Thisistheinformation age and technology has
shortened the time to cross oceans.

Span of National Control and Investment in National Advantage

The advanced industrialized nations can no more prevent the movement of design and
production capability to other regions of the world than could the L uddites of England
prevent replacement of their hand loom cottage industry in the early 1800’s by punch
card automated looms.

Nations and blocks of nations have the capacity to create an environment that
encourages investment. Singapore provides an excellent example of investment strat-
egy, but not of individual freedoms (Sisodia 1992). The investment policiesin the
United States are less strategic (Porter 1992). One of the most critical investments for
any nation isin the skillsand industrial culture of its people (Reich 1990). The people,

Introduction

unlike capital, information, patents, laboratories, design organizations, and produc-
tion facilities, remain located in the nation. The skill of the work force isamajor
attraction to investment. Investment produces the jobs for the people.

Some investments by a company or nation give it an unique advantage which
establishes and maintains profitability even in the face of aggressive low cost com-
petitors. Such advantages have been called dis-equilibrium advantages, (Thurow
1996). Education and infrastructure in systems engineering for the definition of com-
plex systemsis such a dis-equilibrium advantage.

Importance of Systems Engineering
The development of new large complex systems with world sales potential isamajor
contribution to any economy. No nation can keep the production of parts within their
bordersif there is an economic advantage el sewhere. However, industrialized nations
can keep the development of new complex systemswithin their bordersif they have a
preeminently qualified work force and infrastructure for defining competitive sys-
tems efficiently. Some parts will be sourced world wide and help open global mar-
kets. Most part manufacture, assembly, and integration can be kept within borders by
the organization that creates the system. A few examples from just one industry are:
the Boeing 777, the stealth bomber, the replacement American Airlinesticket reser-
vation system, and the FAA flight control system. Some of these examples were suc-
cesses and some were failures (Gibbs 1994). The successes provide downstream
employment and job training experience for thousands of workers. The failures waste
capital and human resource. Existing experience with successful complex systems,
professional system engineering skill, and system engineering infrastructure have tre-
mendous positive downstream leverage on an economy.

However, there is a gap, aroadblock in attaining state-of-the-art systems engi-
neering skill levels and infrastructure.

1.3 The Gap

The information which is critical to a modern system definition comes from users,
operators, owners, marketing organizations, and procurement organizations. This

information is often available only ininformal, natural language, such as English.

The language expresses needs to be met without referring to engineering concepts
and terms. Thisis the systems engineering input.

The output from systems engineering is a set of specifications. These are dis-
seminated to awide variety of support disciplineswhich need specific information in
their own notations and views, available to them in their own computer based tools.
Systems engineering information needs to be rigoroudly transformed to the multiple
different models, notations and views of the downstream engineers who create
designs.

21

Introduction

The Gap is the void between needs expressed in informal, natural language and
component specifications described in the multi ple engineering notations. To date this
gap has been bridged by good systems engineering practices and by hard work. This
work results in huge text documents detailing the component specifications for
designers. Engineersin each downstream discipline must read and interpret the text,
transform it into their own models and terminology, and then enter it into their com-
puter tools. They must remove the ambiguity and inconsistencies between what has
been written and what they know will work correctly. Clearly, this processistime-
consuming and error-prone.

1.3.1 Closing the Gap

22

Modeling can fill the gap. Modern technology now gives us desk top accessto power-
ful computers and software which can provide modeling to fill the gap, reduce the
effort to cross from needs to specifications, and increase rigor and correctness.

Capture of the modeling information for modern complex systems is important
both for productivity in the engineering work and for checking information for incon-
sistencies, omissions, and errors.

Prior Experience in Other Disciplines

Similar gaps have existed in other fields including mechanical engineering, integrated
circuit chip design, and software engineering. In some cases these gaps have been
closed. Mechanical engineering is agood example of the evolutionary approach to
filling the gap. Mechanical engineering is one of the oldest engineering disciplines
and has addressed many of the problems now faced by the systems engineering. One
of the major tasks of mechanical engineersisto specify the geometry of parts which
are to be manufactured and assembled. These geometries are then analyzed to ensure
that they will perform according to the requirements and that they can be manufac-
tured efficiently.

The traditional mechanical engineering technique to describe a part’s geometry
was to use physical drawings. In the 1960's computers and software tools began to be
used to capture mechanical geometry information. However, these tools belonged
exclusively to the mechanical engineers. The computerized drawings still had to be
read and trandlated separately by other engineers performing analysis and simulation
because their computer tools used for analysis could not exchange information with
the mechanical design toals.

The geometric specification of mechanical systemsis now rigorously transmit-
ted and transformed among computer tools for design, analysis, and manufacturing.
The numerous tools were originally developed independently with different assump-
tions about nature of geometry information. Integration of the tools was not possible
until alanguage was devel oped which unambiguously described the required geome-
try. The Express language was chosen. It is semantically well defined and spans the

Introduction

application of geometry. In addition standards have been developed and used to
implement the seamless trand ation and transfer of information among tools for
mechanical design, analysis, and manufacture. The STEP/PEDES standards for rep-
resenting geometry is one such standard. The value of which was demonstrated by
projects developments such as the Boeing 777 aircraft, (Norris 1995).

When transistor design was first begun a single engineer could understand acir-
cuit initsentirety. A gap developed as the circuits grew in complexity and then
moved from discrete components into integrated circuit chips. The same level of
attention to detailed design was needed asin the older component designs but, it grew
beyond the scope of individual comprehension. To close the gap a new generation of
design and analysis tools had to be built and amethodology for effective tool use had
to be developed. Integrated circuit chips are now designed and simulated using
VHDL or schematic capture and are transformed into geometric mask features for
manufacture using standardized intermediate forms for the information. Well estab-
lished design rule standards define exactly how manufacturing foundries can accom-
modate the design and the circuit layout (Mead and Conway 1980).

Software engineering has closed a similar gap, only to have the gap reappear at
ahigher level. Assemblers and compilers were developed to close the initial gap
between programmers and the computers with which they worked. This not only
helped to ensure correct operation of their programs, it also took much of the drudg-
ery of programming out of the hands of humans and put it into the computer. This suf-
ficiently closed the initial gap. It reappeared, however, at a higher level. As
computers grew more powerful and correspondingly software became more complex,
the compilers and languages they supported were no longer sufficient to ensure cor-
rect operation.A new generation of tools have been developed to help close the new
gap. In these tools software algorithms and structure are designed graphically and in
higher level languages. These are compiled by rigorous transformation to the
machine language needed by specific computer architectures. Data relationships are
captured in information models which can be represented in graphically or symbolic
language. The database schema can be generated from the models, (Premerlani and
M.R. Blaha 1994, 1993).

Closing the Gap in the Engineering of Complex Systems
The gap for the engineering of systems can be filled by extending the modeling tech-
niques that are applicable to the definition of systems described in this book.
Rigorous, executable models of behavior (what things do) and structure (how
things are built) means the capture of system requirements and specifications in mod-
elsthat are computer executable and unambiguous. It is possible to use automatic
transformations of the system modelsinto exactly the views and notations needed by

23

Introduction

1.4

24

the supporting engineering disciplines. Thisrigor cannot be obtained with non-execut-
able specifications written in natural language text alone. That is not to say that text is
unimportant. It is used to accompany the models and provide explanations of them.

The tools for this work, however, as was the case for Mechanical Engineering,
have been created by different |aboratories and vendors and they cannot exchange
information with one another. Thereisat present no agreed upon computer-executable
description of the work to be donein systems engineering and of the information to be
captured and transformed. Such standardized computer executable descriptions are
essential for creation of an integrated tool environment.

The same modeling techniques that are applicable to system requirements and
specification can be used to define the system engineering work to be done and the
information to be captured and transformed at each step of the work. It is possible for
the systems engineering profession to carefully define the process it uses, rigorously
defining its accumulated best practices as a behavior for engineers. An executable
meta-process model provides aframework for this definition. The information cap-
tured and transformed at each step of the meta-process can be represented in an exe-
cutable information model which captures the structure of data relationships. We will
show how to use this meta-process not to drive engineersto perform their work in
exactly the same way, but rather to tailor the methodol ogies, notations and views of
choice by individual businesses and organizations.

Purposes of Modeling

Modeling is used to reduce the time and effort expended by engineers shortening the
design cycletime. It is used to check the information for consistency and complete-
ness reducing the error rate. It is used to preserve the current engineering results for
use during later maintenance, product upgrade, or product replacement efforts. It is
used to describe unambiguously; every symbol and number such that each has one and
only one meaning. The models ensure that at the end of the process all necessary
information is available and correct.

Modeling in no way substitutes for creative engineering thinking and problem
solving. Creativity and new solutions come from the engineers. Modeling reduces
their manual work and improves accuracy.

Definitions

Words like science, engineering, system, context, structure, and behavior are widely
used and understood. The specific interpretation of each word varies with the context
inwhich it appears, the person seeing it and the disciplines using it. A few definitions
are given to clarify these termsfor their usein this book.

Introduction

1.4.1 Science
“Science is the branch of study that is concerned with the establishment or strictly
with the quantifiable formulation of verifiable general laws chiefly by induction and
hypothesis’. (Mirriam-Webster 1981)

Science carefully observes the behavior of things and creates quantitative laws
that describe what things do under defined conditions. These laws are executable
guantitative models. They can be evaluated by people or computers to get numbers
that describe things and what the things do.

1.4.2 Engineering
“Engineering isthe professional art of applying science to the optimum conversion of
the resources of nature to benefit man.” The words engine and ingenious are derived
from the same Latin root, ingenerare, meaning to create.”
“Engineering isan art requiring the judgement necessary to adapt knowledge to
practical purposes, the imagination to conceive original solutionsto problems, and
the ability to predict performance and cost of new devices or processes.”

“Unlike the scientist the engineer is not free to select the problem that interests
him; he must solve problems as they arise; his solutions must satisfy conflicting
reguirements. Usually efficiency costs money; safety adds to complexity; improved
performance adds to weight. The engineering solution is the optimum solution, the
end result that, taking many factors into account, is most desirable.” (The New Ency-
clopedia Britannica 1980)

Engineers solve real problems using the laws of science, executable models, to
predict quantitatively the performance of alternative solutionsto real problemsin
order to create new things that benefit people. It isacreative art to find better systems
that better meet peoples needs. Quantitative modeling taken from the results of sci-
enceisthe aid that engineers use.

1.4.3 Model
“Model: A pattern of something to be made” (Mirriam-Webster 1981).

A model describes the essential nature of a process or thing. They are not the
thing itself. Models are vaidated only when they have been verified by observation
and measurement under controlled conditions. Models are unambiguous, they use
mathematics, graphic or symbolic languages that have one meaning only for the sym-
bols used. Natural languages like English do not qualify for modeling. The natural
languages are essential for written explanations of the models.

144 System

“ A systemis a complex unity formed of many often diverse parts subject to a common
plan or serving a common purpose.” (Mirriam-Webster 1981)

25

Introduction

A system isathing built from many other things, components, which interact for
acommon purpose. If an engineer isto define a system he must describe its context,
its behavior or purpose, and its structure

1.45 Behavior

“Behavior: The way in which an organism, organ, or substance acts, especially in
response to a stimulus’ (Mirriam-Webster 1981).

When we describe the behavior of a system we will consider scenarios of its use
under avariety of conditions and the systems response to the scenarios.The engineer
must describe the system response to the external things under all possible conditions.

1.4.6 Structure

“Sructure: Arrangement of parts, or of constituent particles, in a substance or body”
(Mirriam-Webster 1981).

The structure of a systems is the parts that it comprises and the relationships
among them. The engineers must describe the structure of the system:
» Aligt of al the componentsthat compriseit
» How the components are interconnected

» What portion of the total system behavior is carried out by each component

1.4.7 Context

“A context is the interrelated conditions in which something exists or occurs.” (Mir-
riam-Webster 1981)

A significant misconception about context is the assumption that the context is
given in aparticular problem and does not need to be analyzed in the art of finding a
near optimal solution to the problem. Very often the most important aspects of the
problem involve looking at alternatives in the context and evaluating them.

1.4.8 Optimization

“Optimum: The best or most favorable degree, quantity, number” (Mirriam-Webster
1981).

It follows then that optimization is the process to achieve the most favorable
degree. In systems design we need to consider optimization at two levels, context and
system.

Context Optimization
» Anaysisof aternativesin the context of the system

» Choice of anear optimal context for the problem

26

Introduction

System Optimization

» Anaysisof aternativesin the structure of the system, what components may
be used and what each component may do.

» Choice of anear optimal set of components and their individual behaviors, a
design of the system

1.5 Basic Abstractions

There are a set of commonly used abstractions that people use to simplify the world
around us. They are so familiar that we often do not consciously think about them as
we use them and do not distinguish among them clearly as we speak or write about
them. These are the same basic abstractions that are needed for modeling in the engi-
neering of complex systems. However, in modeling it is necessary to clearly define
the abstractions and use symbols for them avoiding ambiguity of meaning.

Because these abstractions are basic, they appear in the many engineering disci-
plines and in languages used for software engineering, (Liskov 1981). Unfortunately
the basic abstractions are called by different names, represented with different sym-
bols, and combined in different ways by the engineering disciplines and in the sup-
porting tools. These abstractions, their meanings or semantics, are the basis for both
modeling in systems engineering and for automated translation of that information
into the notations and views of other engineering disciplines.

1.5.1 Basic Abstractions Used with Structure

Things or Objects

Distinguishable things or objects are one of the most fundamental notions of human-
ity. There are several aspects of objectsthat are used to describe or specify them:

1. Name of the thing

2. All of the properties of the thing that are important for the problem of current
interest

3. All of thetasks, actions or, functions, that are be performed by the thing for the
problem of current interest

4. All of the inputs the object accepts and the outputs it generates

5. How to connect to the object (its interfaces)

27

Introduction

Parts Tree or Aggregation
Systems are often composed from other systems. Things are built from things. Aggre-
gation allows usto consider the thing as a unit, ignoring its parts, avast simplification
in thought. Alternatively it allows us to consider an object as an assembly of parts; to
think about how it isbuilt. A partstree capturesthisinformation. When all of the parts
are properly assembled the object is produced.

Interconnection
Since things are built from things, we must have away to express how thingsrelate to
each other. We must be able to show which partsin an assembly are connected and
which are not. Interconnection shows this and defines additional information about
how the connection takes place and what interfaces are used.

Number
From infancy children are taught the abstraction of number and how to count. If we
have many of athing number lets us express how many in arigorous way. When we
learn arithmetic we have a set of rigorouslogica rules that we can use to execute this
abstraction and transform the information as we need.

Classification
Classification deals with the kinds of things that exist. It is a grouping abstraction
based on shared properties. Classes can be broken down into subclasses and the sub-
classes into sub-subclasses The abstraction of class and classification tree is distinctly
different from that of parts and partstree.
» Theabstraction of parts describes how something is decomposed or assem-
bled.

» Theabstraction of class shows common properties or behavior of things. It rep-
resents alternatives that may be chosen and provides a means to find or index
things

One may wish to select a pet by choosing among birds, fish, dogs, or cats. If the
choiceisadog, isthe dog a poodle, alabrador, or aterrier? These are class choices.
The pet shop will probably be arranged with animals of any one classin a particular
area. One finds a labrador by going to the dog section.

The distinction between parts of things and classesis often blurred in speech and
in writing. Both abstractions are important and useful, and they need to be distin-
guished in any notation used to model systems.

Association

The abstractions Aggregation, Interconnection, and Classification are all referred to
more generally as associations.

28

Introduction

1.5.2 Basic Abstractions used with Behavior

The basic abstractions used with behavior are functions and composition. While these
may sound unfamiliar, they are commonly used by most people. A simple example
will illustrate these abstractions. We will ook at a behavior and then pull it apart into
its basic components.

Consider the behavior of “Put out the milk for dinner” as though it was not intu-
itively obvious and had to be explained in detail. For example, imagine explaining it
from the standpoint of ayoung child who does not know what to do or from that of a
person from a primitive area who had never seen amodern kitchen.

“Put out the milk for dinner” is composed of other behaviors like: “ Get glasses
from the cupboard”, “Get milk bottle from the refrigerator”, “ Pour milk into glasses,
“Return milk bottle to the refrigerator”, and “Put glasses on the table”

Each of these behaviors involves one or more actions taking place. These
actions are varioudly called work steps, methods, functions, or activities. Different
words have been used to describe this abstraction which refers to work that trans-
formsthings. In this discussion, we use function for this abstraction. The basis of this
abstraction is the description of work which transforms things

In more formal language, a function is described in terms of inputs, outputs and
atransform relation output to input. The function “Pour milk” has as inputs a bottle of
milk and empty glasses. It has as outputs glasses filled with milk and a bottle from
which milk has been removed.

Functions, taken by themselves, are not sufficient to describe behavior. Thereis
an ordering to the functions. Some ordering isintrinsic; it isimposed by the reality of
the world. In other cases the choice of order may not effect the desired transformation
and can be chosen for convenience. It is often desirable to leave some of these alter-
native choices to designers.

In our example, “ Get glasses’ and “ Get milk bottle” may be done in any order.
“Get glasses” and “Get milk bottle” must both be completed before “Pour milk” can
be done. “ Get glasses’” must precede “Put glasses’. “Pour milk” must precede
“Return milk bottle”. “Pour milk” and “Put glasses’ may be done in any order.

Textual descriptions of ordering and timing relationships get to be very confus-
ing for behaviors of even modest complexity. Various diagramming techniques have
been developed to simplify these descriptions. Functional Flow Block Diagrams are
one such technique (Blanchard, Fabrycky 1990)(MIL-STD-499 1968).

In summary, the abstractions of behavior are:
e Functions

* Inputs and outputs to the functions

29

Introduction

1.6

» Ordering of the functionsincluding: how inputs may trigger functions and how
inputs may establish conditions for selecting aternative paths in a complex
behavior

Organization of this Book

This book describes both the principles of modeling complex systems, and the process
of engineering complex systems. It provides a coherent example of modeling a system
to demonstrate how modeling is employed.

1.6.1 Principles of Modeling

30

In Chapters 1 through 10, the principles of modeling are developed from primary con-
cepts and abstractions and a core engineering processis presented. These primary con-
cepts and abstractions are familiar to everyday life. They correspond to basic concepts
used in the many engineering disciplines from software engineering through mechani-
cal and electrical engineering. Because of their generic nature, they form afoundation
that can be used in the transformation of models from systems engineering specifica-
tions to the notations and views needed by the design engineering disciplines.

The primary concepts are used to build the modeling principles and a description
of the core technical systems engineering process. The core process is shown to apply
to the several phases of development: concept phase, domain analysis phase, system
design phase. The generic applicability of the core processisasimplification in train-
ing, project execution, and in tool development and procurement.

The modeling concepts and techniques are described using both text and graphic
models. A variety of notations can be used for the graphic models. Although enthusi-
asts argue that particular notations are superior, for our purposesit is sufficient that the
graphic notation

1. iscomplete enough to capture the information used in systems engineering
2. that it is computer executable

3. that it has been published and isin use, and

4. thatitiseasy tolearn and to use.

Unfortunately thereis no single existing notation which satisfies all four requirements.
We do in this book what is commonly done in practice, that isto marry two different
methodol ogies, each with its own strength. For the capture of information about struc-
ture of things, avariant of the Object Modeling Technique (OMT) notation from soft-
ware engineering has been chosen, (Rumbaugh 1991). For the capture of information
about behavior the notation of Functional Flow Block Diagrams (FFBD) has been
chosen from systems engineering (MIL-STD-499 1968). These diagrams are not com-
puter executable and have been augmented with input/output information. They are
closely related to Alford's Behavior Diagrams, (Alford 1977,1992).

Introduction

Small examples are used to explain and clarify the concepts. An information
mode is provided for each of the major systems engineering work steps to show the
information handled in that step and the relationshi ps among the information items.
These modelsillustrate the information to be collected and transformed in each work
step. It shows how the pieces of information are interrelated. They also give basic
information for tool development and integration.

1.6.2 An Example of Modeling

Without examples, the descriptions of concepts and abstractions become an intellec-
tual activity with little feeling of how to usethem in real world development projects.
In chapters 11 through 14 we examine areal world problem. Any real world develop-
ment of acomplex system, however, istoo large to capture in a portion of a book
because there is too much detail.

Asacompromise, this part of the book describes a single small example prob-
lem model ed with the process and concepts described in the first part of the book.
Great emphasisis placed on the transition of knowledge from the system analysis and
design to design engineering. Handoff to software and database engineering is used
as an example. This emphasis has been selected for two reasons:. there is increasing
pervasiveness of software and database development in modern complex systems and
there is a shorter tradition of systems engineers communicating with these disci-
plines.

The example problem is selected to be familiar to most readers. It isan Auto-
mated Teller Machine System. The treatment takes the problem from needs and con-
cept analysis through specification of components. It considers the effects on bank
structure that adding ATM may introduce. In this respect this ATM exampleis both
different and more comprehensive than similar examples used el sewhere.

1.7 Summary

Thebook concludes with adiscussion of engineering of complex systemsasit isdone
today. The ability to engineer complex systems efficiently and with rigor is an impor-
tant asset for businesses and for nations. Presently there are excellent engineering
best practices for the development of large complex systems that have been proven
over time. These practices, however, are largely unsupported by automation and tool
environments. Parts of the process are automated, but the existing tools are not inte-
grated. A major reason for thisisthe extensive use of natural language to express
most of the design information. Natural language is ambiguous and, therefore, not
executable by people or computers.

Modeling, used efficiently, is the solution to rigorous and efficient engineering
of complex systems. Coupled with development of standards for information
exchange it can also address the problems of creating tool environments.

31

Introduction

1.8

32

Systems engineering can draw upon experience gained in other disciplines.

Other engineering disciples have closed their gaps by using executable models to per-
form their work. They have created the foundations for tool environments by employ-
ing models to define the information they use and how they transform that
information.

The basic abstractions needed for modeling in the engineering of complex sys-

tems are common to everyday experience. To proceed with modeling, these abstrac-
tions need to be defined, represented uniquely in a modeling notation, and applied. A
number of symbolic languages and graphic languages exist that can be used for these
purposes.

Exercises

1. Referto “Put out the milk for dinner” example in “Basic Abstractions used with
Behavior” on page 29. Create your own graphic notation to express your solutions
to the following.

a

Create and draw a picture of an object (thing) with a place to record the object
name, the object properties, and the object functions.

Create a picture of the context of the person, as an object and as the system to
be described, who will put out the milk. Consider which objects are external
things in the context and which objects will be inputs or outputsin the behavior.

Create apicture for each of the functions, “Get glasses’, “Get milk bottle”,
“Pour milk”, “Return milk bottle”, and “ Put glasses”

Show how the above functions are ordered in a graphic picture. Consider the
required order. Consider any additional ordering you may wish to impose.

Create a picture of how inputs and outputs are related to the functions.

Combinethe pictures of exercises d. and e. to capturein one view the functions,
their inputs and outputs, and their ordering.

What different kinds of milk might you get from the refrigerator. Create a class
tree for these choices.

2. What problems arise is using the graphic notation developed in question 1?

3. What gaps, other than the modeling gap, exist in the process of engineering com-
plex systems?

What degree of formality and rigor is required in executable models?

In what ways can modeling speed development of a complex system?

Introduction

1.9 References

Alford, Mack. 1977 A requirements engineering methodology for real time systems,
|EEE Transactions on Software Engineering, Vol. 1, No. 1

Alford, Mack. 1992. Strengthening the systems/software interface for real time sys-
tems, Proceedings of the Second Inter national Symposium of the National
Council on Systems Engineering, Vol1. 411, Seattle, WA. July, 1992

Blanchard, BF and W. Fabrycky, 1990. Systems engineering and analysis, Second
Edition. Englewood Cliffs, N.J.: Prentice Hall.

Defense Systems Management College, 1990, Defense systems engineering manage-
ment guide, US Government Printing Office, 000802001202-5.

Gibbs, Wyatt W. 1994, Software’s chronic crisis. Scientific American, pp. 86, Sept.

Kronlof, Klaus. 1993, Method Integration: Concepts and Case Sudies. Chichester:
John Wiley & Sons

Krugman, Paul. 1994. Does third world growth hurt first world prosperity? Harvard
Business Review, 72 July-Aug: 113-121

Liskov, Barbara, et. al. 1981. CLU Reference Manual, Lecture Notes in Computer
Science, ed. G. Goos and J. Hartmanis: Springer-Verlag

MIL-STD-499 1968, Functional Flow Diagrams, AFSCP 375-5, USAF, DI-S-3604/
$-126-1, Form DD 1664

Mirriam Webster 1981. Webster's Third New International Dictionary, Philip Bab-
cock Gove ed., Springfield, Ma.: Mirriam-Webster Inc.

Norris, Guy. 1995. Boeing's seventh wonder. | EEE Spectrum. October: 20-23.

Ohmae, Kenichi, 1995. Putting global logic first. Harvard Business Review, 73 Jan-
Feb:119-125

Porter, Michael E. 1992. Capital disadvantage: America sfailing capital investment
system. Harvard Business Review, 70 Sept.-Oct:65-82

Reich, Robert B. 1990. Who is us? Harvard Business Review, 68 Jan-Feb:53-64
Reich, Robert B. 1991. Who is them? Harvard Business Review, 69 Mar-Apr.77-88

Rumbaugh, James, Michael Blaha, William J. Premerlani, Frederick Eddy and Will-
iam Lorensen, William. (1991). Object-Oriented Modeling and Design, Engle-
wood Cliffs, N.J.: Prentice Hall

Schwab, Claus, and Claude Smadja 1994. Harvard Business Review, 72 Nov-Dec:40-
50

Sisodia, Ragjendra S. 1992 Singapore invests in the nation corporation. Harvard Busi-
ness Review, 70 May-June:40-50

The New Encyclopedia Britannica 1980, Volume 6, pp. 860, 15th Edition

Thurow, Lester, 1992 Head to head: The coming economic battle among Japan,
Europe, and America, William Morrow and Company, Inc. New York

33

Introduction

Thurow, Lester, 1996 Head to head: The future of capitalism, William Morrow and
Company, Inc. New York

2

Basics of Structure

2.1 Introduction to Structure

This chapter focuses on structure and the primary ideas, or abstractions, which are
essential to its modeling. These abstractions are already familiar from everyday life.
Thewords we use in everyday speech, however, and the ideas they convey are ambig-
uous. This chapter clarifies the abstractions for representing structure and shows how
the ambiguity isresolved (Liskov 1981). It also presents the basis for producing exe-
cutabl e structure model s which can be transformed into alternative views and verified
by computer. We use the graphic notation of Object Modeling Technique, OMT,
(Rumbaugh 1991) becauseit is simple, readily understood, widely used, and sup-
ported by tools. While this book focuses on the abstractions needed for the engineer-
ing work, other notations can be used if they span the needed abstractions.

2.1.1 Structure and Behavior
Before delving into the semantic makeup of structure and how to model it, we first
describe the importance of separating structure from behavior. Figure 2-1., Behavior
and Sructure, shows this relationship between these two concepts.

35

Basics of Structure

36

Behavior Structure
Description) mapped Description
onto
(what it does)

(how it is built)

v

Description

Figure2-1. Behavior and Structure

These two components, structure and behavior, are the essential views of any system
description. Behavior isthe what it does part of the system description and structureis
the how it is built part.

These two views, with a mapping of behavior onto structure, form a system
description. If the desired behavior is defined separately from a structure, then aterna
tive structures can be readily identified and the desired behavior can be mapped onto
each of them, so they each exhibit that behavior. A trade-off analysis can then be per-
formed to pick the best solution. Thisisacritical best practice in the engineering of
systems because it finds a near-optimal solution while guaranteeing the desired behav-
ior emerges from the system design.

Not all engineering disciplines place strong emphasis on trade-off among alter-
natives to find a near-optimal solution. Some of those disciplines mix behavior and
structure together in the views they use of their systems or components. That mixing
works for those disciplines, but it makes trade-off more difficult because thereis no
independent description of what the systemis to do.

Basics of Structure

2.1.2 Basic Views of Structure

The key views of information used to express structure are things or objects, their
internal attributes, and the associations among them. Figure 2-2., Description of
Sructure: The Elemental Views, is a picture of the relationships among these basic
views and their relationships to the description of a system’s structure.

Context
Description

\ Assembly , how envi rtonment
Description onnects
! how parts
/ / inter connect

built from

Class Tree PartsTree

Generalization4

Synthesist
Specialization ¥

Decomposition

e
Structure e

Description
(how)

Figure2-2. Description of Sructure: The Elemental Views

Object classes are the primary building block for all structure models. They model the
elemental pieces of a system’s structure. The primary associations among object
classes are:

« Classification Trees, which represent categories of things and the relationships
between the categories,

37

Basics of Structure

» Interconnection, which represent the connections among things and between
the environment and the system, and

» Parts Trees, which describe how things are composed to make bigger things.

These views are all discussed in more detail later in this chapter along with the OMT
notation for them. The concepts and notation are illustrated with an example.

2.1.3 Executable Models of Structure

38

Executable models can be executed either by a computer or manually by an engineer
to interpret the models, check for accuracy, check for completeness, or trandate them
to notations used by other disciplines. Each kind of item in the model hasasingle
meaning and is represented by a unique symbol. The information in the modelsis suf-
ficient to fully describe the engineering work at hand.

When non-executable models are used with computer tools, the models can be
read and interpreted by trained engineers. There is some ambiguity in the models and
the interpretations by different engineers may vary somewhat. The computer cannot
be used to interpret the models, check for accuracy, check for completeness, or to
translate them to notations used by other disciplines.

An executabl e part tree can show the breakdown of a system into its assemblies,
its least replaceable units and its smallest parts. Such alist can be executed to generate
the parts needed at any stage of assembly or the parts required for field service of the
system. If properties of the parts are associated with their object class descriptions,
then the parts list can be executed to calculate properties such as cost or weight for the
entire system, for subassemblies, or for least replaceable units.

An executabl e interconnection diagram can be used to ensure that every part,
object class, has at |east one interconnection. When a system is devel oped hierarchi-
cally with severa levelsin its parts list, the interconnection diagrams can be checked
to ensure that the multitude of interfaces at the lower levels are consistent with the
interfaces defined at higher levels. If the interconnection diagram represents the wir-
ing list for electronic components, then the computer can do automated layout of the
components by referring to alibrary which contains a physical description of the elec-
tronic components and the design rules that apply.

An executabl e classification tree represents the kinds of partsthat may be chosen
for asystem. It can be used as the taxonomy for a browsing facility to search alibrary
of partsfor the kind of part that is needed. It can be used as the basis for the menus of
ahuman-machine interface. It can be used in software with an appropriate compiler to
generate the message passing among software objects. It provides the basic informa-
tion needed for reuse.

Basics of Structure

Consider a scenario for electronic circuit design. An electrical engineer designs
acircuit for implementation on acircuit board. The circuit elements are chosen from
aclassification of types of circuit elements. This choice produces a partstree. Thecir-
cuit is defined by establishing their interconnections among the circuit e ements.
Because the behavior of each element is known, the electronic behavior of the circuit
can be calculated. The parts which can be used for these circuit elements are chosen
from aclassification that organizes the parts library. The part pin connections can
now be related to the circuit element interconnections, and the physical properties of
the parts can be obtained from the part library. Since the geometry of the partsis now
know, they can be automatically laid out on acircuit board according to design rules
using the interconnection data which has been preserved and transformed through
these steps. Now that the physical interconnection detail has been added, the resis-
tance and capacitance of the interconnections can be extracted and combined with the
electrical propertiesto compute actual timing conditions in the circuit. When timing
is satisfactory, the information can be transformed into masks for forming the circuit
board, drill tapes for automatically drilling the part mounting holes, and the instruc-
tions for automatic insertion machinesto insert partsinto the boards. Throughout this
scenario the three fundamental associations of classification trees, partstrees, and
interconnection are executed repeatedly, with additional information added at each
step, and with information transformations applied for application to particular imple-
mentation capabilities.

In adifferent engineering domain we can see the same need for development of
executable structural models. Modern software engineering practice calls for soft-
ware engineers and database designers to determine the interactions between their
respective parts of the system before committing to any particular implementation.
The way datais stored and partitioned, the structure of the database, has a profound
effect on the system'’s speed and performance, the behavior of the system. Thetools
used to capture the structure information contain generators which generate the code
declarations and the database schema from the models. These declarations and
schema can then be executed and used in trade-off and optimization decision making.
Once final trade-off decisions have been made the resulting generated code and
schema becomes part of the system’s implementation.

As the examples demonstrate, when professionals decide to use executable
models and chose one, or afew, semantically well defined graphic or symbolic lan-
guages for their work, automation can be introduced into the process. This type of
automation aids the designer in choosing the best design. It produces magnitudes of
quality and productivity improvement. The rigorous transformations of information
make surethat the final product implements the design faithfully. With the addition of

39

Basics of Structure

40

executable behavior information, discussed in the next chapter, to the structure infor-
mation, simulations of performance can be performed at many stages of the design
and implementation to ensure that the very first implementation works as desired.

Examples of graphic languages are:
e Buhr, (Buhr 1984), or Booch, (Booch 1983), diagrams for designing Ada soft-
ware

» ¢dectrical schematic diagrams
» control engineering block diagrams, and
» object modeling technique (OMT) diagrams for software and databases.

Examples of semantically well defined symbolic languages are
» COBOL or C++, software design languages,

* VHDL, ahardware description language, and
» Express (which was used to define geometry standards).

Unless systems engineers capture their requirements and specifications of behavior
and structure in a precise and executabl e language, their requirements and specifica-
tions will remain ambiguous and error prone. While this status quo persists, each
downstream engineering discipline will have to continue interpreting natural language
specifications instead of receiving data in their particular notation. These manual
interpretation efforts are not only costly and error prone, they waste a valuable
resource, skilled engineers' time, which would be better spent designing and solving
real engineering problems. When the systems information is described precisely, auto-
mated tools will ensure that the correct information is provided to the component
engineers quickly, accurately, and unambiguously.

There are alarge number of notation suitable for systems engineering concepts.
Criteriafor evaluating the various notations are: ease of training, ease of use, match
with organization culture, and adequacy of tool support. In performing this evaluation
it is essential to understand the underlying semantic constructs required to do systems
engineering. Once the base concepts are understood, then the tools, views, and repre-
sentations of information that can help the systems engineer can be judged. In this
book we have chosen to use the OMT notation, with minor adaptations to better repre-
sent the systems engineering structure information.

The remainder of this chapter introduces the semantics and OMT notation for
structure and illustrates it by modeling the structure of a pocket knife. The semantics
and notation for modeling behavior will be considered in the next chapter.

Basics of Structure

2.2 Example - Modeling a Pocket Knife

In order to introduce OMT notation for structure and to make it clear what is meant
by the written descriptions, we will walk through the steps taken to model awell
known physical object. We have chosen a pocket knife as our subject. The particular
knife we are modeling, shown in Figure 2-3., Ordinary Pocket Knife, has two blades,
a can opener/small screwdriver, a bottle opener/large screwdriver, an awl, a cork-
screw, and a key chain. All of these parts of the knife and the relationships among
them need to be captured, unambiguously, in our model.

Figure 2-3. Ordinary Pocket Knife

2.3 Objects and Classes

The next severa sections introduce the various object modeling concepts and give an
example of each concept as applied to the pocket knife. We also give a brief overview
of the OMT notation for each concept and note where our usage departs from the gen-
eral practice. See Object Oriented Modeling and Design for a more complete treat-
ment (Rumbaugh 1991). This formal method, when coupled with other modeling
techniques described elsewhere in this book, form an executable model of the entire
system. This model can then be tested and verified for correctness. We begin with
objects.

2.3.1 Definition

What are objects? In general they are things, physical or logical things. Looking
around aroom you can see many objects: chairs, tables, carpets. These are all obvious
examples. There are al'so some |ess obvious objects. openings, color, and airflow.
Choosing the right set of objects to model for a particular problem or to includein a
system design is an art. There can be many potential right sets of objects. Trade-off
analysis performed after the mapping of behavior onto the object structure guides the
final choice of objects to include in the system implementation.

41

Basics of Structure

When we speak about objects we talk of classes of objects and instances of
objects. Classes define a category of things, where all the member of share certain
structural and behavioral traits. Trucks, Cars, and Planes are all examples of classes.
All trucks share certain properties as do all planes. Instances define a specific object
such as “Bill’s Red Truck.” They are members of a class and as such share the com-
mon behavior and properties but, they also have a distinct identity apart from the
class.

Classes can be general such as*“Vehicles’, which would include cars, planes, tri-
cycles, and al sorts of other types. Classes can also be very specific such as “Internal
Combustion, four wheeled, 2 passenger automobiles.” In developing an object model,
trade-offs need to be made about the amount of detail that isincluded in a class defini-
tion. The more specific it isthe easier it may be to usein a particular implementation.
Thisweighs against the portability and reusability of the object design. It may be hard
to adapt to an aternate architecture if the structure model istoo narrowly defined.

2.3.2 Modeling Objects in OMT

42

Object models are used to identify and capture the information pertaining to an object
class and to define the associations between object classes. The information captured
includes:

e ClassName,
» Attributes (properties), and
» Functions (methods, operations) performed by object class

By using Object Models a systems engineer can formally express the composition of
an object class and its associations with the other objects classesin the system. The
model of the class then embodies the specification and requirements for the systems
structure. Asthe class model is developed it isimportant to record the rational for
design decisions along with the model.

Figure 2-4., Class Definition Box, shows how the class definition is depicted
using OMT.

Class Name

Attributes

Functions

Figure 2-4. Class Definition Box

Basics of Structure

Class Name

The class nameisthe primary identifier by which the existence and purpose of the
classis conveyed from the designer to potential users of the class. The only semantic
rule associated with aclass nameisthat it be unique. This ensures that the classis dis-
tinguishable from all other classes. Practicality, however, dictate that a name appro-
priate for its associated structure and functionality be chosen. As with choosing
which classes to use in a system, the choice of a name is not an exact science. The
name should be broad enough to cover most of the potential uses of the classes, yet
narrow enough not to overstate the capabilities of the class. There are avariety of
naming conventionsin use, al equally valid (Young 1990). One convention should be
adopted for all objects within a system.

Class Attributes
Class attributes are the properties shared by each instance of the class. The list of
attributes for a class must include all of the properties of the class that are needed for
the engineering problem at hand. For a class that models a physical thing such asa
car, the attribute list will include items such as weight, acceleration, fuel consump-
tion, turning radius. The attributes are the kind of information typically found on a
spec sheet.

Attributes are used in two ways. They can model calculated information or local
information. For the class car, the attribute accel eration will be afunction of attributes
of parts used to build the car, like weight, engine torgque, transmission ratio, and tire
diameter. In order to calculate acceleration for the car values must be known for these
attributes. The system engineers may have an established goal for acceleration if itis
important to customer needs and wants. In this case, they must budget design targets
for weight, engine torque to the designers of the components. They must monitor the
actual values achieved in design, and finally validate accel eration on the implemented
product. The other attribute usage is for local information. These attributes store the
rest of theinformation that must be known about an individual instance. In the case of
the class car, fuel typeis such an attribute. One instance may have the value gasoline
for its fuel type and another may have the value diesel.

An attribute is more than just aname. Type information is generally included in
addition to the name. They may also have default values which are used to initialize
instances. These defaults persist in the instance until a better value has been estab-
lished.

Choosing which attributes to include in a class definition is part of the art of
object modeling. Only the highly relevant attributes needed by engineers for the prob-
lems and questions they must answer should be included as part of the object class.
Other, secondary attributes are often better left to other parts of the structure. If, while
defining classes, one classis found to contain a collection of weakly related attributes
then the structure as modeled is probably lacking and needs to be reworked.

Basics of Structure

Class Functions

A Class can be passive, having no functions, or it can be active, having avariety of
functions. The functions detail what behavior the instances of the classes can perform.
Physical abjects that are active generally have an energy source that fuels their activ-
ity. A variety of words are used synonymously with function: method, operation,
activity. In the parlance of object oriented structure design, method is most commonly
used.

Aswith attributes, choosing which functions are part of a class is a mixture of
science and art. Some functions naturally belong as part of aclass. Others are not so
obvious. Car classwould be likely to have start, stop, accelerate, and turn functions
among others. Our pocket knife might have open tool, close tool, cut and sharpen
methods. Modeling refines the choice of methods.

Itisonly asaclassisviewed in relation to the rest of the system and in relation
to the desired behavior (functional requirements) for the system that judgements can
be made about which functions should be included or excluded. Some functions for a
class are discovered when the desired behavior for the system is mapped or alocated
to the object classes from which the system isto be built. For the pocket knife exam-
ple, the function cut may not be a part of the class pocket knife at all, it may be part of
aclass blade or even class person.

The assignment of functions to a class define its interfaces with the rest of the
partsin asystem. They serve to hide all of the internal structure and behavior details
of the class. Thisleadsto agreat degree of flexibility and reuse potential. Mechanical
engineers have embraced this black box encapsulation since Joseph Bramah designed
and manufactured his locksin England in 1784 using interchangeabl e pars, (Encyclo-
pedia Britannica Vol. 11, pp.11, 1980). Independently Eli Whitney designed and mass
produced muskets with interchangeable parts for the US government in 1801 in the
United States (Encyclopedia Britannica Vol. 19, pp.822, 1980). The rise of object ori-
ented software design has led software designers to adopt a similar approach. In the
modern development of large systems, industry standards, referred to as protocols, are
often defined for interfaces so that many vendors can supply parts of the system yet
maintain proprietary designs for the interior structure and performance of the parts

they supply.

Instances
Instance diagrams are similar to class diagram with the exception that they describe
actual objects or things and not just type definitions. Figure 2-5., Instance Diagram,
shows the graphic notation used for an instance diagram in OMT.

Basics of Structure

Class Name

Instance Name

Attributel name = value
Attribute2_name = value

Instance
Figure 2-5. Instance Diagram

An instance diagram has rounded edges on its outline and shows the instance’'s name
and class along with the attributes and the instance’s value for the attribute. In an
instance diagram you can have many instances with the same class.

2.3.3 Example - Pocket Knife, Object Class Definition

Figure 2-6., Initial Class Definition for Pocket Knife, shows afirst passdesign for the
pocket knife class.

Pocket Knife

Number of Blades
Color

Number of Tools
Tool Types
Sharpness

Wear

Hold tool open
Hold tool closed

Figure 2-6. Initial Class Definition for Pocket Knife

Since we are modeling a pocket knife, that isthe name we will giveto our class
definition. As our understanding of the design evolves, so may the name. From exam-
ining the knife we are modeling, six attributes are chosen to characterize it. The
attributes Number of Blades, Number of Tools, and Tool Types are all used to charac-
terize the elements that are part of the pocket knife. Sharpness and Wear characterize
the performance of the pocket knife in usein its environment. Color is an appearance

45

Basics of Structure

attribute. Later we will consider whether all of these attributes are appropriate to this
class, or whether some of them are more appropriate to some of the classes from
which it is built or to which it relates. Other attributes may also need to be added such
as Srength or Corrosion Resistance.

The functions, (methods) for Pocket Knife will be considered thoroughly in
Basics of Behavior on page 67. In this chapter afew of the ideas concerning assign-
ment of functionsto objects are developed, particularly where structure considerations
contribute to the understanding of behavior and the assignment of functionsto objects.
The functions for Pocket Knifeinvolve holding the tools open or holding them closed.
Thisis not obvious because one might initially associate cut, turn, carve, whittle and
similar functions with pocket knife. However, what distinguishes a pocket knife as a
wholeisthat it holds the tools closed in the handle, and then holds tools open when
they arein use. Thereis a physical mechanism which stores and releases energy to do
this, a spring. These two functions are not aresult of any one part, like the spring, but
are the result of the assembly of the parts into the whole with interfaces among the
parts which have been carefully designed to give the assembly this emergent behavior
whichisaresult of several parts working together.

In contrast, functions like cut or turn are the result of the application of a particu-
lar tool to awork piece with which it interfaces properly. A can opener tool cuts open
acan and a phillips head screw driver tool turns a phillips head screw. Similarly, func-
tions like carve or whittle are appropriately assigned to the person who is manipulat-
ing the pocket knife against the work piece because they refer to the purpose and
control of the overall activity. The important point to understand is that the full
description of an object includes the identification of the functions that object per-
forms, and that the analysis needed to make such an assignment involves study of both
structure and behavior.

2.3.4 Example - Pocket Knife Instances

46

Having defined the pocket knife object class, we can now look at instances of the
class. To do thiswe use an instance diagram. Figure 2-7., Several |nstances of Pocket
Knife, shows how this looks.The four instances shown are al pocket knifes but they
are digtinct from one another.

Basics of Structure

Pocket Knife
Dave' sKnife#l

Number Blades= 2

Color =red

_Il_lunlwaer of TO(?(|S_?3 ik, awl)
ool Types = (knife, pick, aw

Sharpness = 66%

Wear = 40%

Pocket Knife
Jim’'sKnife

Number Blades =2

Color = red

Number of Tools=3

Tool Types = (knife, pick, awl)

/ Pocket Knife \

Dave' sKnife#2

Number Blades = 2

Color = blue

Number of Tools =3

Tool Types = (knife, can opener,
bottle opener)

Sharpness = 90%
wear =23% j

Pocket Knife
Carol’sKnife

Number Blades = 2

Color = red

Number of Tools =3

Tool Types = (knife, pick, awl)

Sharpness = 90%
Wear = 23%

Sharpness = 90%
Wear = 23%

Figure 2-7. Several Instances of Pocket Knife

The same functions can be performed by each of theinstances since they arethe
same class.

2.4 Aggregation

Most thingsin the world are built from other things, certainly thisistrue of complex
systems. Aggregation or a Parts Tree is the abstraction used to represent the parts
which comprise abigger thing. This powerful abstraction allows usto think about the
whole thing, think about the set of partsthat compriseit, or focus on one of the parts
that is used to build it. When our thought process goes from the whole to its parts, the
processis considered to be decomposition or partitioning. When our thought process
goes from the partsto the whole, the process is considered to be synthesis or composi-
tion. Aggregation represents the tree of parts. Engineers can work top-down, bottom-
up, or middlie-out.

2.4.1 Modeling Aggregation in OMT
Figure 2-8., Aggregation Used to Model the Sructure of the Univer se, shows how the
aggregation association is depicted graphically in OMT. In this case, the universeisat
the top of the aggregation hierarchy, with each tier in the tree representing afiner
granularity of parts, until the very bottom which models the fundamental particle
class. The diamond on the lines connecting a class to its constituents denotes the asso-
ciation as being one of aggregation. Thistype of treeis called an AND tree.

Aggregation has been used to represent two useful but, inconsistent concepts:

47

Basics of Structure

1. To mean built from, awhole assembled from its parts and requiring all parts to
be present.

2. To mean contains a, a whole containing the indicated parts, but existing in the
absence of the parts.

Aggregation drawn with an open diamond symbol is used to represent built from.
In thistext we will use asolid black diamond for the abstraction containsa. Thisisan
extension beyond traditional OMT.

The diagram in Figure 2-8., Aggregation Used to Maodel the Sructure of the Uni-
ver se, depicts aggregation as atree. In the real world there are many aggregation trees,
there are also many aggregations that are networks rather than trees. Consider if the
universe diagram were to be fleshed out. Every class on the penultimate tier has an
aggregation relation (made up of) with fundamental particle. They also would have
other aggregation relations with higher order classes (is part of). Thus aggregation
relations can become a network of relations amongst the existing classes. The system
of interest may be anywhere within this vast network. The engineer uses only that
small portion of the network needed for the problem. The same modeling abstractions
areused for al tiers.

Universe]]
aggregation = built from, AND tree

<

1st Decomposition Tier

2nd Decomposition Tier

Fundamental Last Decomposition Tier
Particles

Figure 2-8. Aggregation Used to Modd the Sructure of the Universe

2.4.2 Example - Pocket Knife with Aggregation

Aggregation in object modelsis away to represent the relationship between classes.
The pocket knife was shown in Figure 2-3., Ordinary Pocket Knife. An expanded
view of it is shown in Figure 2-9., Pocket Knife Disassembled. From this view we can
see that the knifeis built from two plastic side panel, a metal case built from plates,

Basics of Structure

springs and rivets, six tools, and akey chain. Thisis the structure that we should
model if we are to end up with aflexible and broadly useful design. We will use
aggregation to describe it.

Figure 2-9. Pocket K nife Disassembled

The metal case is secured with arivet, and three rivets are used for hinges for the
tools. In system design it isimportant to determine how the parts are related to sub-
assemblies until the final object is assembled. The parts tree, however, can be drawn
in severa different ways, each with its own use. If one only needs to collect all the
parts, it is sufficient to go from pocket knife to all the partsin onetier. For our usein
modeling the structure of the pocket knife we choose to show all the aggregate levels
of structure. Thisis shown in Figure 2-10., Part Tree for Pocket Knife.

49

Basics of Structure

Pocket Knife
[I
I\K/Ie_t]:":d Plastic
nife "
A bly Side Panel
I I I I I
Metal Awl Large Cork Key
Knife Knife Screw Chain
Case
Can Small Screwdriver
Hinge Opener Knife Bottle Opener
Rivet
[I I |
Metal Side Channel Spring Assembly
Plate Plate Rivet
Figure 2-10. Part Treefor Pocket Knife

The new design mirrors the observation we made looking at the picture of the disas-
sembled knife. The plates, springs, and rivets comprise the Metal Knife Case. Thisin
turn along with the tools and the Key Chain comprise the Metal Knife Assembly.
Finally, this assembly and the Plastic Side Panel aggregate to form the Pocket Knife.
At each of the diamonds, there is an assembly.

Figure 2-10., Part Tree for Pocket Knife uses a different view of the classes than
we saw in the previous section. In it we have chosen not to show all of the attributes
and methods of the classes. To proceed further with the design, thislevel of detail
should now be added. We will do some of that investigation but leave the complete
design as an exercise for the reader.

Taking the attributes first, consider Color. We find that this attribute no longer
belongs to Pocket Knife but rather should be moved to the Plastic Side Panel class.
Additionally, this class needs to augmented with an attribute that deals with the logo.
If welook at adifferent attribute of the original class, Number of Bladeswe find that it

Basics of Structure

isno longer necessary. The aggregation structure clearly shows how many blades the
knife has. It is eliminated. The remainder of the original attributes must be similarly
considered.

Now consider the methods from the original design. Tool specific functionality
such as “cut” and “open can” need to be moved out of the Pocket Knife and into the
appropriate tool classes. With this change we begin to see the an improved, more
flexible design. Changing which tools areincluded with the knife is now just a matter
of aggregating a different set. The methods of the knife class are not affected by the
change. In the original design all of the methods of Pocket Knife would need to be
updated to accommodate this change.

We should revisit the name of our class at this point. We have explicitly mod-
eled the tools that make up this knife. This has actually reduced the scope of the
pocket knife class somewhat. The model, as it stands, is more appropriately named
Six Tool Pocket Knife. Later on we will show how to model a more flexible design
that covers awide range of tooling options without needing to change the aggregation
relations. Figure 2-11., Part Tree for Sx Tool Pocket Knife shows the design asit cur-
rently stands, with the attributes and functions redistributed as discussed above.

51

Basics of Structure

52

Six Tool
Pocket Knife
Hold Tool Open
Hold Tool Closed
[|
Metal Plastic
Knife Side Panel
Assembly Color
Y Logo
[I I I |
Metal Awl Large Cork Key
Knife Wear Knife Screw Chain
Case Wear Wear
<> Sharpness
Hinge
Rivet
Can Small Screwdriver
Opener Knife Bottle Opener
Wear Wear Wear
Torque Sharpness Torque
[I I |
Metal Side Channel Spring Assembly
Plate Plate Stiffness Rivet
Figure2-11. Part Treefor Six Tool Pocket Knife

The aggregation used here is more general than a one tier picture that goes
immediately to all the parts. One can change the kind of pocket knife by substituting
different kinds of tools among the six that can go in the tool. One can make the knife
bigger and able to accommodate three more tools by adding an additional spring and
channel plateto the Metal Knife Case. Thistype of design and style of showing aggre-
gation promotes reuse, which has been called family-of-parts for many yearsin

Basics of Structure

mechanical systems. Many different knives can be assembled from the same set of
parts by varying the number of channel plates and springs, and by selecting among
tools that can be used.

Aggregation is modeled as a relationship between classes. Thus the Six Tool
Pocket Knife classis associated with the Metal Knife Assembly class. Instances share
in this association asthey share in all other aspects with their class definition. Thus
Dave's Six Tool Pocket Knife will be associated with Dave's Metal Knife Assembly
and Dave's Plastic Case and instances of all the other classes with which Six Tool
Pocket Knife has an aggregation relationship.

2.5 Cardinallity

It is very desirable to have another abstraction to show the choices and constraints
one hasin selecting among objects. The aggregation treeisan AND tree that shows
that aclassis built from part 1 and part 2, and part 3. It is not sufficiently detailed to
capture binary information noting the existence or non-existence of connectionsin
these trees. Each of the situations below merits further description within the struc-
tural model to capture what would otherwise be expressed in hard to digest prose or,
more probably, never be explicitly stated.

» Exactly oneinstanceisapart of aclass which aggregatesit.
» Potentially many instance are included as parts.
e The part may or may not be included.
* Anexact number of partsisrequired.
* A rangeof partsisrequired.
2.5.1 Cardinallity in OMT

Figure 2-12., Cardinallity and Conditions Expressed in OMT, shows how each of
these are depicted within the graphics of the OMT methodol ogy.

53

Basics of Structure

Class Exactly one
+ Class Many, zero or more
O Class Optional, zero or one
1+
Class One or more
1-2,4 . .
Class Numerically specified
Figure 2-12. Cardinallity and Conditions Expressed in OMT

Symbols are used for the frequent cases of many and optional. The association is
annotated numerically for other cases.

2.5.2 Example
With the additional flexibility given by the introduction of the cardinallity abstraction
we can be more specific in our model of the Six Tool Pocket Knife. Several facts
about the knife have been left out of the model so far. These involve the number of
each part that is required. Figure 2-13., Part Tree for Sx Tool Pocket Knife with Cardi-
nallity shows the updated model with this information added.

2.6

Basics of Structure

Pocket Knife
[| 2
Metal Plastic
Knife Side Panel
Assembly
[I I I I
Metal Awl Large Cork Key
Knife Knife Screw Chain
Case
3 Can Small Screwdriver
Hinge Opener Knife Bottle Opener
Rivet
2| 2
I I I |
Metal Side Channel Spring Assembly
Plate Plate Rivet
Figure 2-13. Part Treefor Six Tool Pocket Knifewith Cardinallity

Classification of Objects

The next major abstraction for describing structure which we will discussis classifi-
cation. Put simply, classification isaway of grouping similar things. Classifying is
one of the earliest skills developed by children. They learn to understand the world
around them by developing categories for al that they experience: fun things, hot
things, things that get me in trouble. Given that this skill is developed early and con-
tinues to be reinforced throughout life it would be foolish not to exploit classification
for understanding and designing systems. It has been employed for centuriesin vari-
ous ways:

» Library catalogues
» Layout of itemsin astore
» Grouping of financial itemsin accounting

» Providing products that can be customized

55

Basics of Structure

» Designing with afamily of parts

Depending on which direction you look at it, classification can be seen as Generaliza-
tion or Specialization. In generalization we look at a collection of objects and use
common attributes (properties) or behavior to group things together. Sneakers, boots,
and dippers can al be generalized as shoes. In specialization we take the opposite
view. We break down a genera class into smaller ones which share the attributes of
the general class but have different attributes which distinguish one from another.
Shoes are specialized as sneakers, boots, and slippers.

The groupings, classes, are used to discuss, store, or locate a group of things.
The difference between finding something in a department store or in afleamarket is
that the merchandise in the department store has been classified and arranged geo-
graphically according to well understood classes. To get sneakers one goesto the shoe
department of the department store or to a shoe store.

The attributes and functions of agenera classare al present in the more specific
classes that are descendent from the general class.

2.6.1 Classification in OMT

56

Aswith the other elements of structure, it is useful to have a graphic notation for clas-
sification to augment text. Figure 2-14., Classification Tree for Pocket Knife, shows
how OMT represents classification with atriangle. In OMT the class at the root of the
tree is known as a superclass while those at the bottom of the tree are called sub-
classes.

Pocket Knife

Store toolsin handle

A kind of, OR Tree

Switchblade Gravity L ockblade Six Tool
K nife K nife Knife Pocket
Knife

Figure 2-14. Classification Treefor Pocket Knife

Basics of Structure

2.6.2 Example - Classification of Tools

Going back to our example, we note that there are more kinds of pocket knifes than
we have considered so far. The six-tool pocket knifeis but one of these. Others
include:

» Switch blade knives, which open and lock the blade on depression of arelease

» Gravity knives, which open the knife by gravity and lock it on depression of a
release

» Lock blade knives, which are opened by the user but lock open

* Multi-Tool pocket knives, which are opened and closed by the user. The knife
holds the tool open or closed, but does not lock it in position.

Figure 2-14., Classification Tree for Pocket Knife classifies pocket knives based
on the way they are opened and held open. Each of the subclasses inherits common
features from the parent class. In this case they all inherit the function Sore the tools
in handle. Each of these subclasses has unique functions and attributes which distin-
guish it from the other subclass members. The four subclasses differ in the manner in
which tools are opened and are held open.

In our example, we have designed a Six-tool Pocket Knife. We noted, however, that
perhaps there is a better way to model this design. Classification can be used to this
effect. Figure 2-15., Types of Tools for Class Tool gives a classification of sixteen
possible tools to use in amulti-tool pocket knife. They all are tools and as such share
whatever common attributes are modeled as part of the tool class. For this example,
that would probably include Sze and Attachment Point since al the tools are required
to fit within the storage space provided in the handle of the pocket knife.

57

Basics of Structure

58

Tool
I [I |

Screwdriver Large Cork Awl
Bottle Opener Knife Screw

Cen Small .

Opener Knife Hook Chise

Magnifier Scissors Wood Saw Pliers

Reamer Phillips Fish Scaler Metal Saw
Screwdriver
Figure 2-15. Typesof Toolsfor Class Tool

The Tool classintroduced above can now beinserted into the aggregation tree
for the Six Tool Pocket Knifein place of the direct aggregation of the individual tools.
We have now succeeded in extending our design from avery specific Six Tool Pocket
Knife that required a change in the structure model to change the tools which were
included to afamily of Six Tool Pocket Knives where 8008 distinct Six Tool designs
are possible without requiring a change to the structure model.

By combining the new Tool class with a change in the cardinallity constraints on the
design we can generalize the model even further. The simple abstractions used to
describe structure are powerful enough to describe a product family that extends
beyond six tool pocket knifes. Analysis of the structure model shows that one can
build knives with three, six, nine, or twelve tools by adding springs and channel
plates. Knives for avariety of purposes can be composed by choosing among the six-
teen tool types. Aswe make this change we will need, once again, to update the name
of the class. Thistime we move to amore genera name of Multi-Tool Pocket Knife.
The model of this Multi-Tool shows avariable n used for cardinallity. In this case n
can be any integer value from oneto five. Figure 2-16., Multi-Tool Pocket Knife Fam-
ily showsthe resulting design.

Basics of Structure

Multi-Tool
Pocket Knife
I ' | 2
I\K/Ie_tfal Plastic
nife)
A bly Side Panel
| 3n [3 |
Metal Hinge Key
Knife Tool Rivet Chain
Case
I [I |
Screwdriver Large Cork Awl
Bottle Opener Knife Screw
Cen Small .
Opener Knife Hook Chisal
Magnifier Scissors Wood Saw Pliers
Reamer Phillips Fish Scaler | [Metal Saw
Screwdriver
2 n-1 n
Metal Side Channel Spring Assembly
Plate Plate Rivet
Figure2-16. Multi-Tool Pocket K nife Family

It isapparent that one can use aggregation and classification to represent just the
collection of parts needed to make a specific knife, the assembly of a particular knife,
or an entire family of knives and their assembly. No one of these alternativesis better
than another. It is efficient to use the ssimplest description that captures all the infor-
mation needed for the problem at hand.

59

Basics of Structure

2.7

Interconnection of Objects

Objectsdo not stand alone. They work together in a cooperative manner to achieve the
goals of the designer. Interconnection is the abstraction we use to think about how
things (systems and objects) interrelate physically or logically.

2.7.1 Definition

60

Objects interact with some but not all of the other objectsin their environment. Each
of the interactionsis modeled as an interconnection. Each interconnection has a num-
ber of properties that also need to be modeled. Chief among these properties are the
role that the interconnection models and the information transfer which takes place at
the interconnection. Interconnections between a system and its environment describe
its context. Interconnections internal to a system describe its assembly.

Roles and Interconnection

Every interconnection has arole associated with it. Roles define the reason for two
classes to have an interconnection. Understanding of the roles used in interconnection
is key to understanding the corporate behavior of the classes. Roles are by their nature
symmetrical. That isif class A has arole association with class B, then class B has a
corresponding role association with class A. In some cases aswe will seelater therole
is secondary to the information being transferred.

Some examples of role associations:
» A person holds aknife / the knifeis held by a person

» A generator powers amotor / amotor |oads a generator
» A parent supportsachild in college/ achild in college is supported by a parent

* Requirements trace to functions/ functions trace to requirements

Input/Output and Interconnection

Input and Output aong an interconnection describe the flow of information, material,
or energy among the objects. Although every interconnection has arole associated
with it, the same is not true of Input/Output. Only active objects which encapsulate
functions that transform information, material, or energy send something which is out-
put from one object and input to another. Interconnections exist between passive
objects but they have no associated I/O. From the standpoint of devel oping an execut-
able model capturing the I/O information is critical. The 1/O definition contains infor-
mation detailing the type and quantity of stuff being generated and consumed. This
along with numbering and conditional markers make the model executable.

Some examples of Input/Output associated with interconnections are:

» A person appliesforce to a knife, measured in newtons

Basics of Structure

» A telephone caller speaks to a callee/the callee speaks to the caller, measured
in information content

» A generator delivers current to a motor, measured in amperes
» A parent gives money to achild in college, measured in dollars

Input/Output has directionality and may flow in one direction between objects,
or in both directions.

Not every interconnection has input/output associated with it. For derived
requirements and the parent requirements from which they are derived thereis alogi-
cal reason for interconnection, but there is no input/output associated because
reguirements are passive objects, and do not generate outputs or consume inputs

Some engineering disciplines, like electrical engineering think primarily about
interconnection and input/output. Others, such as database engineering, deal prima-
rily with passive objects (information items) and think primarily about interconnec-
tion and roles. In systems engineering both are needed.

2.7.2 Interconnection in OMT

In OMT interconnection is represented graphically as aline between the object
involved. Thelineis annotated with the reason for the interconnection and sometimes
the inputs and outputs. Cardinallity and conditionallity is also represented on inter-
connections. The same cardinallity notation is used for these that is used with aggre-
gation. Figure 2-12., Cardinallity and Conditions Expressed in OMT, summarizesthis
notation. In OMT interconnections are called associations. The aggregation and clas-
sification relations are also called associationsin OMT.

2.7.3 Example - Multi-Tool Pocket Knife Context

Classes have an environment in which to operate. This environment is called the con-
text of the object. By modeling the context we will gain additional insight into the
working of the object we are designing. Interconnection establishes the boundary
between the thing and the context in which it is used. In software terms, it defines the
application program interface, API. In the physical ream, it is the boundary defini-
tion for differential equations or the physical coupling to other objects.

Oneway to approach development of the context of asystem isto think through
its use or operation in its environment. When written in text in narrative form this
information is often called an operations concept. A simple narrative for a pocket
knife follows.

“She reached into her right pocket and took out the pocket knife. She
opened the large blade and grasped the knife firmly. She picked up the work
piecein her other hand and whittled it to the desired shape. She put down the
work piece, closed the knife, and put it back into her pocket.”

61

Basics of Structure

62

Note that the only actions as written are performed by the person. The knife
blade is acting as a pressure transformer which receives 10 or 15 pounds of force on
the handle and transforms that to tens of thousands of pounds per square inch of pres-
sure where the blade edge pushes against the workpiece surface. But there are actions
performed by the knife that were not written down. Here is the same operations con-
cept, augmented with the knifes actions.

She reached into her right pocket and took out the pocket knife. She opened
the large blade with her thumbnail against the closing force of the knife
and the knife held the blade open. She grasped the knife firmly. She picked
up the work piece in her other hand and whittled, by applying forceto the
knife which transferred theforce to the workpiece, it to the desired shape.
She put down the work piece, closed the knife against the holding for ce of
the knife and the knife held the blade closed, and she put it back into her
pocket.

To model the context we must first identify the objects involved. The abjectsin the
environment with which the knife interconnects are the person, the pocket, and the
workpiece. Figure 2-17., A Context of Multi-Tool Pocket Knife shows these intercon-
nections. If not needed for clarity, the line between person and pocket and the line
between person and work piece can be eliminated because they do not show intercon-
nections directly to pocket knife and are not essential for understanding its context.

Pocket |ores Multi-Tool operates on Workpiece
Pocket Knife

grasps

opens tool
appliesforceto
closestool

places knifein,
removes knife from

Person holds

Figure2-17. A Context of Multi-Tool Pocket K nife

Basics of Structure

2.7.4 Example - Multi-Tool Assembly Interconnection

In addition to relating to things in their context, things are also built out of other
things. Certain of the parts interconnect or are associated to assemble the thing. Inter-
connection shows how to assemble an object from its parts. For each aggregation, or
assembly point, in the aggregation for the multi-tool pocket knife, there is an assem-
bly of parts, an interconnection. Figure 2-18., Assembly Interconnections for Metal
Knife Case shows the assembly interconnections for the Metal Knife Case.

Channel 2 Spring Metal Side
Plate adjacent to adjacent to Plate
secure
secure Assembly secure
Rivet
Figure2-18. Assembly Interconnectionsfor Metal Knife Case

The Channel Plate, Spring, and Metal Side Plate are secured by the Assembly Rivet.
The Channel Plate is adjacent to two springs. Dimensioned mechanical drawings con-
vey more information about physical objects than do the object diagrams, but that is
the work of mechanical engineers doing detail design. The object diagrams for struc-
ture capture the parts, the choices among parts, and how the parts are to assemble,
without designing the parts.

2.8 Roles

We have described the abstractions needed to describe structure and a notation for
these abstractions. These abstractions are all static in nature. That is they capture the
structure of the system at one instant and in one context. Real systems are more com-
plex than this. A single object may have severa roles in the system depending on
when in thelife cycleit is viewed and what problem is being considered by what
group of people. Possible roles athing (object) may have in systems engineering
include:

» Subject System, the thing being defined,

» Externa System, something in the context of the thing being defined,

63

Basics of Structure

» Component, a part of the thing being defined,
* Input/Output, something consumed or produced by the thing being defined.

In our pocket knife example the knife aswe have studied it is the subject system. From
the standpoint of acarver, however, it isjust one of many toolsin the carver’s environ-
ment. Consider all the roles an automobile engine might have:

» The Subject System by the engine design team
» An Externa System by the transmission design team

» A Component by the automobile design team or by a buyer considering engine
options

» An Output by the Engine Manufacturing Facility
* AnInput by the Automobile Assembly Plant

e AnInput and Output by the Just-in Time Logistics Group that delivers parts to
the Automobile Assembly Plant

It isimportant to know what roles an object participates in when viewing it to under-
stand its place in the total structure. It isaso important to maintain consistency in the
object’s design between its use in different roles. The structure modeling capability
described captures these associations rigorously enabling all designersto develop a
shared understanding. Roles and their effect on structure will be discussed in detail in
later chapters.

2.9 Allocation of Functions to Objects

Now that some structural analysis has been performed, the knifeisunderstood in
terms of several structure models:

1. A classification tree which shows the parts that can be selected

2. A partslist or aggregation which shows the parts selected and the parts needed
for assemblies of parts

3. Aninterconnection diagram that defines the context

Basics of Structure

4. Interconnection diagrams that show the interfaces in the assemblies and subas-
semblies

These structure models help with the assignment of functions to the objectsin the
models, although behavior analysis, described in Chapter 3. is needed to fully
develop alternatives in assigning functions to the objects. From the context it is seen
that functions like whittle or carve or fasten with screw are appropriate to assign to
the Person who will manipulate the work piece and the pocket knife and select an
appropriate tool. Functions like turn phillips head screw, or cut open can are appropri-
ate to assign to specific tools. When this understanding is augmented with executable
models of the behaviors involved, the problem and proposed solution are described
rigorously.

2.10 Summary

A semantics for static structure has been defined
The semantic abstractions defining objects are:
» Object Classes having:
* Name
o Attributes
* Functions
» Object Instances inheriting:

» Attributes and having Attribute Values
» Functions
The semantic abstractions defining associations among objects are:
» Parts Tree (Aggregation)

» Interconnection applied to:

e Context

e Assembly
e Classification
e Cardinality

These abstractions have been demonstrated with the modeling of areal product.
The models can be detailed and apply narrowly to a specific product.

The models can be generalized to model a product family and the reuse options
The models of structure are computer executable

A notation, OMT, has been described for this modeling; any other notation may
be used that covers these abstractions.

65

Basics of Structure

The notation can be selected or tailored to organization culture and preferences

2.11 Exercises

1.

Create a Class Box for a person using a pocket knife. Include important attributes
and functions.

Look at Figure 2-6., Initial Class Definition for Pocket Knife on page 45, and exam-
ine the attributes. Do any of the attributes belong more appropriately with the parts
of the knife? Are there important attributes missing? Consider your fingernailsin
opening such a knife. Consider limits in turning screws or prying open paint cans
with a screwdriver tool. Redraw the Class Box for Multi-tool Pocket Knife and cre-
ate one for Tool. Identify the appropriate attributes and initial functions for both
classes.

Create Assembly diagrams for Multi-Tool Pocket Knife and for Metal Knife
Assembly

The Multi-tool Pocket Knife stores tools in channels, which are not parts, but are
regions defined by a set of parts. Define channelsusing OMT models.

More than one type of tool is available to use in making pocket knives. How does
the type of tool effect the model of channels?

Observe your surroundings.
a. Create class definitions for six thingsin your environment.
b. Create assembly or interconnection diagrams for these six things.

c. Chose two of the classes and show how they are related using classification.

2.12 References

66

Booch, G. 1983. Software Engineering with Ada., Menlo Park, Ca.: Benjamin/Cum-

mings

Buhr, R.JA. 1984. System Design with Ada, Englewood Cliffs, N.J.,: Prentice-Hall
Liskov, Barbara, et. al. 1981. CLU Reference Manual, Lecture Notes in Computer Sci-

ence, ed. G. Goos and J. Hartmanis. Springer-Verlag

The New Encyclopedia Britannica 1980, 15th Edition
Rumbaugh, James; Michael Blaha, William J. Premerlani, Frederick Eddy and Will-

iam Lorensen, 1991. Object-Oriented Modeling and Design, Englewood Cliffs,
N.J.: Prentice Hall

Young, D.A. 1990. The X Window System: Programming and Applications with Xt.

Englewood Cliffs, NJ. Prentice-Hall.

Basics of Behavior

3

Basics of Behavior

3.1 Introduction to Behavior

In the previous chapter we described the elements of structure and a notation for
those elements. In this chapter we explore the same issues for behavior. Behavior is
what athing or object does, or what one wants athing to do. Behavior for a system
describes what the system is to do, independent of how the system will do it. A full
description or model of behavior contains sufficient information that a person or a
computer may execute the model and observe the desired behavior. When behavior is
expressed with such adescription it isreferred to as an executable behavior. Such
descriptions have been developed to enable engineers to develop time lines for the
performance of systems, and to execute time-dependent simulations and probabilistic
calculations. When behavior is captured in executable form, it may be checked for
correctness. In this way conditions such as starvation, where one part of a system
never receives the inputsit needs, or deadlock, where separate parts of the system are
stuck waiting for each other, can be uncovered and corrected during system design.

Many methods of describing behavior have been developed over the years. The
methods vary in formality and in the degree of detail which they capture.

This chapter looks at details which must be captured in order to have an execut-
able behavior, and compares thisinformation to some popular methods for describing
behavior or partia views of behavior using text alone or graphic notations.

3.1.1 Elements of Behavior

In order to create a complete description of a behavior a number of modeling ele-
ments are required. The necessary set of semantic elementsincludes:

» functions, which accept inputs and transform them to outputs

* inputs and outputs, of various types, and

67

Basics of Behavior

» control operators, which define the ordering of functions

These modeling elements must be defined using a precise definition language and
expressing these elements with anotation which is unambiguous. The particular set of
symbols and notation used is unimportant so long as they are understood and consis-
tent. Any notation which has al of these characteristic elements can be made execut-
able.

Despite the precision and range of expression afforded by use of abehavior nota-
tion, text cannot be eliminated. Except at the lowest level atext description isrequired
to accompany the behavior model. The text provides a description that can quickly
give consumers of the model an intuitive feel for the model. The details can then be
quickly found by looking at the model. Aswith all other parts of system design, sev-
eral conventions have been developed for these text descriptions. The most common
are:

» definitions for a data dictionary,

* imperative statements, often containing the word “shall”, which constitute a
list of what the system, object, or thing isto do. These are particularly useful
for contract and acquisition purposes. Thislist istermed the specification by
the organization producing it, which becomes the customer. In current practice,
it often forms the basis for the contract to build a system, requiring a supplier to
produce something according to the list. From the suppliers viewpoint this list
is called the system requirements.

* narrative statements which can be joined together to provide a text description
of what the object isintended to do. A narrative of thistypeis called an opera-
tions concept. It is useful for communication with users, owners, operators,
management, marketing and other disciplines which do not need or wish to deal
with al of the engineering detail.

It isimportant to note that these text descriptions are not sufficient to fully describe a
system, just as the model does not stand on its own. Only by blending the two sets of
information do they become a complete picture.

3.1.2 Behavior in the System Context

68

The static description of context establishes what elementsin the environment interact
with the system. The static model of context defines the system by establishing what

external systems interact with the subject system and by listing what excitations, func-
tions, the external systems perform to which the subject system must respond. Figure
3-1., Sructural Context of Multi-Tool Pocket Knife, shows the final context model for
the pocket knife example as developed in the previous chapter. Throughout the devel -
opment of the structure model definition of the functions associated with the classes

Basics of Behavior

was left vague. The interconnections in the context diagram suggest some of the nec-
essary functions. In order to go further with function definition, however, we need to
take a step back for the structural model and develop amodel of the desired behavior.
Once thisis defined we can then partition the behavior and map it onto the structural

elements.

Pocket [2res Multi-Tool operates on Workpiece
Pocket Knife
=}
8
5 05 3
g L
an 89
7558
56 &5
places knifein,
removes knife from Per son holds

Figure 3-1. Structural Context of Multi-Tool Pocket K nife

3.1.3 This Chapter

The static model is lacking two major elements required to rigorously describe
behavior:

» The ordering of the functions
* Theinputs and outputs to each function

In this chapter we will explain these concepts in detail and introduce appropriate
graphical modeling notation for modeling them. We will continue illustrating the
modeling concepts and notation with out multi-tool pocket knife.

After these descriptions and illustrations, we will use OMT to precisely define
an information model for behavior. The chapter concludes with a discussion of how
these models and concepts relate to requirements and specifications.

Modeling of Behavior

Thefirst questions to be considered in modeling behavior are:
* What happens?,

* |nwhat order?, and

69

Basics of Behavior

3.3

* What inputs and outputs are involved?

Modeling of functionsis the way we address the first of these basic questions.
The second question is addressed by the ordering of a collection of functionsin asys-
tem. For ordering, a number of concepts need to be represented:

» sequencing, which indicates which functions must precede or succeed others,
» concurrency, describing functions which can occur simultaneously,

» selection, capturing choices which must be made between functions, and

» iteration, indicating which functions are repeated as a bl ock.

For the third question inputs and outputs to the functions are modeled.

For large complex systemsit is always necessary to break the system structure
and behavior into parts, using aggregation, in order to manage the complexity. The
behavior view can be simplified in another way, by using partial views of the behavior
which together comprise the behavior. Some examples of partia views are:

» Functional Flow Block Diagrams, for functions and ordering of functions

» DataFlow Diagrams, DFD’s, (Martin and McClure 1985), (Yourdon 1989)
and N-squared Charts, for functions and input/output

Functional Flow Block Diagrams

Functional Flow Block Diagrams, FFBDs, were developed in the late 1950's by TRW
Corp. to help describe ballistic missile behaviors which were found to be too complex
to be adequately described in text. Further work at TRW enhanced the descriptions to
make them executable, (Alford 1977, 1992). We will introduce first the basic FFBD
and then discuss the necessary extensions to make the diagrams executable. FFBDs
are discussed in detail in anumber of other reference works (Blanchard and Fabrycky
1990), (MIL-STD-499 1968), (Kockler 1990). The primary views of behavior mod-
eled with FFBDs are functions, their ordering, and their composition.

3.3.1 Functions

70

In FFBDs functions are represented as blocks or rectangles labeled with the function
name. Often anumber is assighed to the function and displayed as a banner across the
top of the block. This number tracks the function location within the hierarchy. (We
will discuss hierarchy later.) Figure 3-2., FFBD Notation for Functions shows this
notation.

Basics of Behavior

413

Function_Name Function_Name

Figure 3-2. FFBD Notation for Functions

3.3.2 Ordering
Ordering of functionsis shown by lines connecting the blocks.

Sequence
A simple sequence is shown by an arrow coming out of the right side of the predeces-
sor and into the left side of the successor. Time in FFBDs flows from left to right. Of
course, limitations such as page size sometimes cause the diagram to wrap back to the
left hand side of the page. thisis shown in Figure 3-3., FFBD Depiction of Sequence.

Predecessor L] Successor

i

Sequence Indicator

Figure 3-3. FFBD Depiction of Sequence

Concurrency
Concurrency is represented by an AND relationship. The AND shows that al of the
branches coming from it can happen at the same time. Thisis not to say that all of the
branches have to be performed in parallel only that they can. In the diagram the AND
is shown as acircle with the word “AND” written inside. All of the concurrent
branches emanate from the circle. The branches for the concurrency join back
together with the main sequence arrows when the concurrency is completed. Option-
aly, the concurrency can be completed with a second circle with “AND” inscribed
and the branches merging into the circle. Choice of which form to use is|eft to the
designer or dictated by the use of a particular support tool. Figure 3-4., Representa-
tions of Concurrency in FFBDs shows both forms.

71

Basics of Behavior

Function A

@ Function B |

Function C

—| Function A

HGND |—® Function B

—— | Function C

N

Figure 3-4. Representations of Concurrency in FFBDs

Selection
Selection isrepresented by an OR relationship. Selection represents two or more alter-
native paths through the functions which can be taken. The FFBD diagram representa-
tion is similar to concurrency with the word AND replace by the word OR. A third
shorthand form is also used for selection. When abinary choice is made, the selection
can be shown by two arrows leaving a function block, each labeled with a selection
criteria. Figure 3-5., Representations of Selection in FFBDs shows the various forms.

72

Basics of Behavior

Function A

@ Function B

Function C

— | Function A
4>69—> Function B —>

— | Function C

P Function A —

Not OK

OK
Choice Function |——®| Function B -

Figure 3-5. Representations of Selection in FFBDs

Iteration
Iteration isthelast of the major ordering operations that is used to model behavior. In
FFBDs iteration is depicted similarly to the third form used for selection. Iteration is
shown as an arrow coming out of adecision block which loops backward over a set of
functions. The backward arrow is labeled with acompletion criteria. Thisisshownin

Figure 3-6., Iteration in FFBDs.

73

Basics of Behavior

Not Done

FunctionA |[—®| FunctionB |—®| Choice Function %

Figure 3-6. Iteration in FFBDs

3.3.3 Example, Pocket Knife

74

The FFBD notation introduced so far, function, sequence, selection, concurrency and
iteration are sufficient to begin modeling the behavior of the pocket knife. We begin
the modeling by referring to the same usage scenario used in modeling the static con-
text.
She reached into her right pocket and took out the pocket knife. She opened

the large blade with her thumbnail against the closing force of the knife and

the knife held the blade open. She grasped the knife firmly. She picked up the

work piecein her other hand and whittled it to the desired shape by applying

force to the knife which transferred the force to the workpiece. She put down

the work piece, closed the knife against the holding force of the knife and the

knife held the blade closed. She put it back into her pocket.

In considering the static context we focused primarily on the objects that are
involved in the scenario. From the behavior standpoint we focus on the actionsthat are
performed. After both models are developed we will map from the behavior onto the
structure. Figure 3-7., FFBD for Person Using Pocket Knife, shows the FFBD model
of the actions performed in this scenario.

Basics of Behavior

continue till finished with knife

Hold L
Work
Remove Open Release Close Replace
Knife fromH Tool —»6@ 6@» Work Rt Tool - Knifein
pocket Pocket
Operate
Tool —

Figure 3-7. FFBD for Person Using Pocket Knife

Thismodel showsaview of theintrinsic behavior of the Person, the behavior as
limited by physical reality. The Knifeisremoved from the Pocket beforeit is opened.
Thetool is opened before the Work is held because it takes two hands to open the
Knife. The Work must be held at the sasmetime as it is operated on. The Work is
released before the tool is closed in order to have ahand free to close it. Thetool is
closed before placing it in the Pocket. Theiterative loop allowsfor the possibility that
adifferent tool or different work pieceswill be operated on in the same session.

3.3.4 Hierarchy
If we were to attempt to model every function with all of the associated detailsin one
diagram, it would quickly become too large and unwieldy. To overcome this limita-
tion hierarchy is used. Hierarchy of functional design provides convenient encapsula
tions of detail. At the higher levels the function blocks represent complex functions,
asthe design proceeds and the lower levels are reached, the functions are increasingly
atomic. The numberswhich label the function blockstrack the level and placement of
blocks within the hierarchy. At each level anew level of numbering is used. Each
block within the hierarchy then has a unique number which specifiesitslocation. Fig-
ure 3-8., Hierarchy representation in FFBDs shows the FFBD representation of hier-
archy.

75

Basics of Behavior

1
Higher Function

1.1 1.2
—® |nterna Detail 1 —®| Internal Detail 2 —3

Figure 3-8. Hierarchy representation in FFBDs

Example, Behavior Hierarchy
In one of the functionsin Figure 3-7., FFBD for Person Using Pocket Knife, Open
Tool thereis a selection among alternative tools to open. Rather than put that detail
into the same FFBD, we will use hierarchy to show that information in a separate dia-
gram. A Lower Level FFBD is drawn for Open Tool as shown in Figure 3-9., Lower
Level FFBD Diagram. The FFBD uses an “Or” construction to show selection.

Open Open
Tool Large Knife

Open
Small Knife

Open

Can Opener
> Clg
Open
Awl

Open ||
Corkscrew

Open
Screwdriver/ [
Bottle Opener

Figure3-9. Lower Level FFBD Diagram

Theorigina FFBD model, developed by examining the scenario is not sufficient
to capture al of the required behavior. The scenario examined the knife in its context.
To make a complete model we need to expand to include the behavior of the knife as

76

Basics of Behavior

well Figure 3-10., FFBD Diagram for Pocket Knife, showsthe simple cyclic ordering
of the functions. The Knife holds a Tool closed, then holds a Tool open, and can then
hold the Tool closed.

Hold Hold
Transfer
— Tool — 1 Eorce —® Tool e
Open Closed

continue till finished with knife
Figure 3-10. FFBD Diagram for Pocket Knife

3.3.5 Input and Output

The ordering of functions requires the capture of their sequence, their concurrency,
their selection, and their iteration. The Functional Flow Block Diagram is one graphic
notation that records this information. Thisinformation isonly a partial view of
behavior because none of the functions' inputs and outputs are described. I nputs/out-
puts must be included in the model because they are the entities transformed by the
functions, because they trigger some functions, and because they provide the infor-
mation about the path to take at some of the selection points among functions. Under-
standing these interactionsis essential to understanding the full behavior. In addition,
the input and output models are required to execute the model and verify their correct
operation.

Behavior Diagrams
When Input/output information is added to an FFBD or equivalent diagram, one
obtains a behavior diagram. Behavior diagrams of this general type were developed
by Alford (Alford 1977,1992). The Alford type diagrams are rotated 90 degrees so
that the time flow is vertical and down instead of horizontal, left to right. The Alford
type diagrams are designed to distinguish among several kinds of concurrency and
incorporate symbols for each type. In this form they are supported by the RDD-100
tool, (Ascent Logic Corp.). In ahorizontal format behavior is supported by the Core
tool, (Vitech Corp). There are differences in the notations supported by different
tools, but the capture of functions, the ordering of functions, and capture of input/out-
puts is common to the different implementations of executable behavior. A related
representation isthat of Statecharts, (Harel 1987), which will be discussed later. This
isthe usua situation: a plethora of competing notations and tools to capture the same
abstractions without tool support to transform among the notations and tools.

7

Basics of Behavior

For use within this book, the Input/outputs are depicted as ovals, and the dashed
arrows show the direction of flow of the Inputs/outputs. Such adiagram is shown in
Figure 3-11., Behavior Diagram for Pocket Knife.

A
\ \

\

\ ‘« ‘"
) 4
Open
Tool : Force : Tool
~
TN v A I
Hold Transfer Hold
- Tool —— Force = Tool i
Open Closed

continue till finished with knife
Figure 3-11. Behavior Diagram for Pocket Knife

In this simple example the inputs come from context and outputs return to the
context. The behavior of the person in the context resultsin a more complex behavior
diagram as shown in Figure 3-12., Behavior Diagram for Person Using Pocket Knife

78

Basics of Behavior

Pocket
Knifein
Pocket

Hold \ / 4

continueill finished with knife |
/ |

"\ ’m Modified
Work

Pocket
Knifein

Pocket Work] \ /
/ /
\ \1 '
Remove Open Release Close Replace
Knife fromH Tool *6@ 6@—» Work P10l ™ Knifein
pocklet { ‘ , Pocket
y \ | 4
* Operate | /
Tool — /
Knifein Open
Hand Force 4 N

/
Cl
w
y

Figure 3-12. Behavior Diagram for Person Using Pocket K nife

It provides an executable description of what the person does. The process
begins with a pocket knife in a pocket and a piece of work. It ends with the pocket
knife back in the pocket and a modified piece of work. The excitations to which our
subject system pocket knife must respond are the input open force from the function
open tool, The input force from the function operate tool, and the input close force
from the function close tool. The response from the pocket knife to open forceis an
open pocket knife with the selected tool held open. The response from the pocket
knife to the force is to transfer the force to the workpiece in the form of cutting or
screwing or however the selected tool appliesits force. The response of the pocket
knife to close force is a closed pocket knife with the tool held closed. Taken together,
the two behavior diagrams can be put together to form a single behavior of the pocket
knife in its context. Figure 3-13., Behavior Diagram for Pocket Knife in its context
shows this single diagram.

79

Basics of Behavior

80

o

E:ontlnuetlll finished with krhfe

Modified
Work

Pocket
Knifein

/
Pocket \ / Pocjet
Knifein
Hold - \ /
Pocket Work \ / /
A \ ,
/
Remove Replace
Knifefromf.lc_)pen %6@ 6@» Release _>Close > Knifein
Ket ool Work Tool
poc Pocket
A 1 4 T 7
\ \ / 4
Loy Operate / /
| Tool I
\
- .
Force Close Tool
Pocket Force
Knifein Open
N |
& / o (e
V V \ W
Hold Transfer Hold
Tool — > Force ——® Tool
Open Closed
—~ Output
f Force
continue till finished with knife
Figure 3-13. Behavior Diagram for Pocket Knifein its context

Basics of Behavior

Data Flow Diagrams

As noted earlier Functional Flow Block Diagrams are a useful partial view of behav-

ior which suppresses al input/output information. The behavior diagrams just dis-
cussed added in the input/output information. If we subtract the sequencing

information from the behavior diagrams what is | eft are the elements of a Data Flow
Diagram. The Data Flow Diagram and N-squared chart are useful partial views of
behavior which are captured in two different notational styles and which suppresses
the information of ordering of functions.

Hand

Open
Force

Pocket
Knifein
Pocket

Pocket \ /
Kneln Hold \ 4
o Work \ / /
Y I
I
/
Ktefrom| | OPen Rdesse | | Close| | REce
pocket Tool Work Tool Pocket
T T i
. 4
/ \ ,
* Operate | /
Tool /
Knifein

‘ N

*

I
Force
4

Figure 3-14. Input-Output Diagram for Person

Figure 3-14., Input-Output Diagram for Person shows the behavior diagram
with the sequencing information suppressed. The notation differsfrom DFD notation.
In DFD notation the functions are in ovals not in rectangles. The inputs/outputs are
annotations on arrows that go from one function to another Data Store are shown as
The name of the data store with aline above and below the name. Figure 3-15., Data
Flow Elements for Pocket Knife Context shows the input output diagram of Figure 3-
14. recast as adataflow diagram. The diagram consists of four disconnected elements
sine the diagram does not include the pocket knife itself.

81

Basics of Behavior

3.5

82

Workin

Work — B _ Hand D Relesse™ _ _ Modfied
- Work Work
Open
Pocket Remove Open FcF))rce
S = = = Knifefrom - — — - =
Knifein pocket Pocket Tool
Pocket

Knifein
Hand

Operate
— - " _ -
Open Force

Tool _

—

—

Close_ __ __ >
Tool Close

Force

Replace
Closed B Knifein | — Toda >
PO‘kaet Knifein
Knife Pocket

Figure 3-15. Data Flow Elementsfor Pocket Knife Context

Representation of Behavior as State

Anather view of behavior which has gained usage in recent yearsis state modeling.
This provides a powerful and convenient method to capture the pattern of activity for
agiven structure. A number of diagraming technigques are used for modeling behavior
with state representation. Chief among these are:

e State Charts, and
e Statetransition diagrams.

These diagrams are very useful for generating implementations at leaf level where
complex trade-off is not needed. When trade-off is yet to be performed, however, state
representations can obscure the possibilities for trade-off or become unmanageably
large.

Two different formalisms are used for representing state. In the first, known as
Mealy machine the functions, or activities, are modeled as taking place during the
transitions between states. (Mealy 1955) In the second the functions are modeled as
taking place while the machine isin the state. These are known as M oore machines.

Basics of Behavior

(Moore 1964). The two representation are interchangeable in terms of their ability to
model a problem (Hopcroft and Ullman 1979). It is important, however, to under-
stand which approach is being used when interpreting a state diagram.

For any given FFBD a state diagram can be constructed which models the same
set of functions. To see that thisisthe case consider the transformations necessary to
get from an FFBD to a state model. They are the same transformation used to change
anondeterminigtic finite automatainto a deterministic automata. Assuming that the
state representation will be a M oore machine, the transformations are as follows:

» For each function in the FFBD create a state. Assign the function as the activ-
ity to be performed whilein the state.

» For each sequence block in the FFBD construct atransition between the states
representing the functions on either end of the sequence. These transition are
labeled as default, or epsilon, transitions.

» For each selection in the FFBD create a transition to each of the selection
choices. Label each transition with the value which corresponds to the selec-
tion criteria.

» For each concurrency in the FFBD create new states for each of the possible
combinations of concurrency. That is create a new state for each permutation
of functionsthat may be activated concurrently. Replicate all transitions from
the original statesto each of the new sates. Add transitions to each of the new
states from the state(s) representing the function(s) which proceeded the con-
currency in the FFDB.

This process, of course, can lead to avery large state model if concurrency was used
in the FFBD model. Statecharts, (Harel 1987),were devel oped to overcome this expo-
nential expansion problem.

Statecharts
Statecharts have the advantages of being hierarchical, of having awell defined rela-
tionship with functions, and of defining “and” states to represent concurrency. The
“and” states that are used with statecharts are really composite states which group
together several substates into a single entity.

Statecharts represent states as shown in Figure 3-16., Sates in Satecharts.

Basics of Behavior

State Name

entry / entry-action
do: Activity - A
event-1/ action 1
event-2 / action 2

exit / exit-action

Figure 3-16. Satesin Sate-

Statechartsin OMT use the Moore formalism which implies that the functions
and activities occur within the state. In the statechart diagram the states are shown as
rounded contours with transitions appearing as arrows. Within the contour for a state
the actions of the state are written. Each state can have an entry action, a do: action,
which isthe main function of the state, alist of actionsto perform when triggered by
events, and an exit action. The various actions are all called activities. Functionsin
FFBDs correspond to Activities in Statecharts. Sequence in FFBDs results in sequen-
tial satesin statecharts. A selection in FFBDs corresponds to transition to states with
corresponding activities in statecharts. Concurrency in FFBDs, “and”, corresponds to
“and” statesin statecharts.

Figure 3-17., FFBD for Pocket Knife recast as a Satechart gives an example of
a statechart diagram.

not finished with knife

do: Remove Knife
from Pocket
/ Use Tool \
do: Hold

do: Close
do: Open Tool
o: Open Tool —~<|__ 00— __. Tool

finished

do: Replace Knife
in Pocket

Figure 3-17. FFBD for Pocket Kniferecast asa Statechart

Basics of Behavior

Statecharts handle hierarchy in a similar way to FFBDs. Each of the state bub-
bles can be decomposed into afiner level of granularity. Thisis the same mechanism
FFBDs employ. In contrast to FFBDs, however, the transitions in statecharts can aso
be refined in statecharts at lower levels.

From a modeling standpoint we have shown that statecharts work fairly simi-
larly to FFBDsfor capture of behavior. A problem arises, however, when the time for
trade-off analysis and mapping to structure occurs. The statechart approach assumes
that there will be one piece of structure which isimplementing, and therefore, respon-
sible for maintaining the state information. This tying of behavior model to a prede-
termined system structure places strong limitations on trade-off.

3.6 Pocket Knife Example, Summary

Together, Figure 3-1., Sructural Context of Multi-Tool Pocket Knife and Figure 3-7.,
FFBD for Person Using Pocket Knife define the static associations of the pocketknife
and the dynamic interactions. They define the interconnections of the pocket knife
with its environment. They define what that environment does to which the pocket
knife must respond, the excitations, and they define the response of the pocket knife.
They are computer executable. In the aggregated form they can be used to make sim-
ulated estimates of system performance.

Although the static and dynamic models of context fully define the system
(pocket knife) environment, they contain no information about the internal structure
of pocket knife. They capture what the subject system must do in response to the
external systems, not how the subject system isto be built. A final step is necessary to
go from the design asit stands to a compl ete system definition. The behavior must be
mapped onto the static structure. Thisis discussed in detail later in this book.

3.7 Information Model for Behavior

Behavior will now be described with a more formal approach using an information
model. We will usethe OMT notation to describe the structure of the information
needed to describe behavior. Figure 3-18., Information Model for Behavior is an
information model which defines Behavior. The associations it presents are each
described.

85

Basics of Behavior

Behavior

|
.

Function
Duration
I nput/Output G(ragt%ratlon
Max amount |d+ 2 allgf Consumption Contral
Min amount fesg rate ordered | Operation
Current amount | generates
consumes Consume by
Tolerance inputs
T Generate | | |
outputs -
Selection| | Sequence Concurrency
Iteration
Non- trigger to alimit
triggering | |
1/10
fPargl_Iel State
unction
condition !

Non- Condition provide criteria for
Condition I1/0
/10

Figure 3-18. Information Model for Behavior

3.7.1 Behavior

86

The key element of thisinformation model isthe behavior object. By understanding it
and its associations readers will come to understand what is meant by behavior.

As shown by the aggregation, Behavior is built from Input/Output items, Func-
tions, and Control Operations. The cardinality shows that the behavior is not made of
just one of each item but isamultiplicity of each, as many as are required to define the
behavior. Furthermore, there is a relationship between Function and Input/output and
between Function and Control Operations which describes how many of each exist
within the behavior.

Basics of Behavior

3.7.2 Input/Output

Input/Output items are passive objects. For the behavior model view we need to cap-
ture the attributes that characterize the Input/Output. These includes arange of size of
the item and tolerance information. Each Input/output is associated with at least one
Function. Most Input/output are associated with at least two functions; one which
generates it and the other which consumesit. An Input/output can be broadcast to all
Functions.

Each Function is associated with two or more Input/output items.

There are two important independent classifications that define subclasses of
input/output relating to Behavior. The subclass classified by effect designates non-
triggering and triggering items. The subclass classified by condition designates input/
output items that do not define criteriafor decision and those that do define criteria
for decision.

Input/output Triggering Items turn functions on and off. There can be more than
onetriggering item for afunction, and more than asingle function can be triggered by
asingletriggering item.

Condition items contribute to the order of functions by providing the criteriafor
selecting among alternative pathsin abehavior.

3.7.3 Function

Function is the other magjor constituent of Behavior. For the behavior model we need
to capture information about the Function relevant to providing a simulation of the
Behavior. Thisinformation includes

» Duration, how long this Function takes to execute as a time or probability esti-
mate,

» Generation Rate, the speed at which it generates outputs, and
» Consumption Rate, the speed at which it consumes inputs.
In addition functions have two operations. consume inputs and produce outputs.

Function isinterconnected with the Control Operation class marked with an
ordered by. From this we learn that a Function can be ordered by many Control Oper-
ations and that a Control Operation can order many Functions.

87

Basics of Behavior

3.7.4 Control Operations

3.75

3.8

88

In

Control Operations determine the order in which multiple functions are activated.
They are any one of four types. The simplest is sequence, as the name implies, this
says that one function comes after another function. Selection isthe basic conditional
operation. Based on some input/output item to which it is associated, the selection
control operation determines which of several possible functionsto perform next. lter-
ation to alimit is a special case of sequence and selection. It is such acommon case,
however, that it is elevated to a control operation of its own. In essenceit is the loop-
ing operator. Concurrency describes the reality that more than one functionis active at
the same time.

The expression of concurrency is critically important. Early in the analysis of a
system there are often many functions which are known to be important and are
known to be concurrent. If the concurrency of the functionsis captured in the behavior
model, independent of structure, then the concurrent functions can be alocated to
objects (resources) in different ways to provide major design alternatives.

As seen from the information model, concurrency can be represented two way's,
as parallel function and as state. The allocation of the concurrent functions to objects
defines the state structure for those objects. A different allocation will result in a dif-
ferent state picture for the objects. For thisreason it is useful to capture behavior with
the functional representations when devel oping requirements and to add state views as
the alocation to objects is established.

The set of control operations shown in hereisaminimal set. More complex con-
trol operations can be constructed from this simple, minimal set.

Summary

In total, the information model defines a behavior as a collection of inputs and outputs
together with some functions. These function are ordered by a set of standard control
operations. The functions consume the inputs and produce the outputs. The inputs pro-
vide the key values for triggering the functions and controlling the selection decision
making. Behavior and these elements are made hierarchical by the structure associa-
tions.

Information Model for Input/Output

There are several additional classifications of input/output which are important to the
engineering of systems and were not included in the discussion of behavior. These
additional classifications deal with issues such as the physical nature of the input/out-
put and its longevity whether it is consumed promptly or is stored. These additional
classifications are important in some applications and are unimportant in others. They
are shown in Figure 3-19., Information Model for Input/Output.

Basics of Behavior

I nput/output
Max amount
Min amount
hvsical Current amount
prysica Tolerance
nature
effect |
Material 1/0 Information 1/0 Non-Triggering 1/0| | Triggering 1/0
Energy |/O oontent)\
condition Triggering Triggering
without with
| | Content Content
| Non-Condition 1/O | | Condition I/O|

longevity

Stationary I/0 Transitory 1/0

access storage

1
| Local 1/0] |GI0baII/O| |Replica| Stock

Figure 3-19. Information Model for Input/Output

Classification by condition and by effect have already been discussed. Classifi-
cation by physical nature isimportant to the general case of systems. The input/output
may be amaterial thing, it may be energy in one of its many forms, or it may beinfor-
mation. Software engineering and software engineering methodol ogies often assume
that al input/output is of the class information. This viewpoint needs to be general-
ized to include material objects and energy when these techniques are applied to sys-
tems.

89

Basics of Behavior

90

Input/output of the class Triggering 1/O has two subclasses depending upon
whether the 1/0 has content. The content may be information, a physical thing, or
energy. Very often in the physical world the triggering and the physical content are
intimately associated. Thisis the case when a person or animal stepsinto a bear trap
with afoot or when smoke sets off a smoke alarm. Methodol ogies or notations that
insist that triggering be disconnected from content in their basic abstractions need to
alow for association of content with triggering to represent systemsin which that
association is aredlity.

An equally important concept is that of how long an input/output persists, its
longevity. Isit stationary and persists in the system for some time before being con-
sumed, or isit transitory and consumed as rapidly asit is produced. Datain software
may belong in either of these subclasses. In the worlds of chemistry and biology some
substances are produced as intermediate products and have only atransitory existence.
Others may remain for long periods of time even when that is undesirable asin the
case of PCB contamination. It isimportant in many applications to deal with the sta-
tionary or transitory aspects of inputs/outputs because of the practical implications.
The assignment of inputs/outputs to these two subclassesis very dependent upon the
application and on the critical issues and time scale important to the application.

For input/output that is persistent, there are two further important subclasses.
One of these is based on the concept of access. The access to the persistent things may
be availableto al, Global 1/0, or isit may be restricted to a particular group, Local 1/
O.

A fina classification is based on the manner in which Input/output is stored,
storage. Some things are themselves stored physically as stock. They are placedin a
warehouse of some kind and one can only take out as many or as much as was put in
because of the physical laws of conservation of mass and energy. Examples are TV
setsin awarehouse, or the potential energy in the water behind Hoover dam.

In many modern instances the physical item itself isnot stored at all. What is
stored isareplicaof the abject in association with amachine which can usethereplica
to rapidly make as many of the objects as desired. For many applications people speak
of this situation as though the actual object were stored, and they abstract away all of
the details of creating the replica, storing it, and creating copies of the original object.
For their practical purposes they have no need for this detail so they treat the situation
as though the object were stored and consider the time to create the object as an access
time. Thisisthe way data storage is considered in software engineering. It is not data
that is stored on a magnetic disk, but tiny regions of magnetization. This detail can be
neglected by many, but not by those who design and manufacture the magnetic storage
devices. There are many examplesin the physical world such as negatives of photo-
graphsor diesfor plastic injection molding machines. The unique characteristic of this
subclassis that one stores an object once, really the replica, and can get as many cop-
ies of it as desired.

Basics of Behavior

3.9 Relationship of Behavior and Structure

Behavior and structure, as we have discussed, can be viewed in many ways by depict-
ing part or all of the information. The two must be modeled separately for the sake of
finding alternative solutions and performing trade off analysis. This does not say,
however, that there is no relationship between the them. Obviously, there must be.
Thisrelationship is modeled in Figure 3-20., Behavior and Sructure Information

Model.

3.9.1 Structure Models
Classification, Interconnection and Aggregation are the three major modeling
abstractions. The can be used in diagrams separately or in combination. Consequently,
the classification is shown asinclusive (the dark triangle) in Figure 3-20., Behavior
and Sructure Information Model.

91

Basics of Behavior

Interconnection

e Context Diagram .
Classification [Aggregation
(Class Tree) Assénbly (ggrt ree)

Il |
Y

| Views of Structure |
[]

Object Model
(How)

Defines Interconnection, Interfaces

Map of
Behagvi or

to
Objects
TEncapsuIat&s Functions

Behavior
Model
(What)

Represented Byl

|Viewsof Behavior |

A

i State, 1/0, Functions
Parﬁl(l)el C'::grglt?tcl)lon’ Eventsl Control
Projections] Projectiong
of . of
Behavior Behavior
Function, E i -
Control une C%tr?[t% ’ Furp% on,
Events

Figure3-20. Behavior and Structure I nformation M odel

Because the behavior is mapped to structure, the behavior and structure models
are not completely independent. The central part of the figure shows a mapping of
Behavior onto the Objects which will provide the Behavior. This mapping encapsu-
latesthe behavior in the objects. Thelist of functions or methodsin the class definition

92

Basics of Behavior

box representing objects must be consistent with the mapping of Behavior. Because
the Behavior includes all Inputs/outputs, the mapping of Behavior to Objects estab-
lishes which active objectsinter communicate via lnputs/outputs. The mapping estab-
lishes the interconnections between active objects that support input/output. The
structural interconnection association must be consistent with the results of the map-
ping or alocating behavior to objects.

It is very important to realize that one cannot predict the emergent behavior of a
system from the properties of the parts alone. How the partsinteract is critical. In the
simple case of the pocket knife, the hold tool open behavior cannot be realized until
the knife case, the tools, and the spring are riveted together. It is the dynamic interac-
tion of the parts which allow atool to be opened or closed easily, yet held in place
firmly. Thisisthe reason for allocation of behavior onto objects such that the interac-
tion of the objects will produce that desired behavior.

3.9.2 Behavior Models

At the bottom of, Figure 3-20., Behavior and Sructure Information Model, there are
shown two ways of representing concurrency. In one type concurrency is represented
using state, and in the other using parallel functions.

A complete view of behavior using parallel functions requires capture of Func-
tions, 1/0 and Control Operations. Behavior Diagrams are this type of view of Behav-
ior. There aretwo partial views. Thefirst is of Function and Control. Functional Flow
Block Diagrams provide thistype of partial view of Behavior. The second partial
view is of Function and Input/output. Data Flow Diagrams, N-squared charts, and
IDEFO charts provide thistype of partial view of Behavior.

A complete view of Behavior using state requires capture of State, Functions,
Input/output, Events and Control Operations. No single diagram capturing all this
information is known to the authors. Rather, two partial views are used to model the
Behavior. Thefirst is of State, Control, and Events. State Charts provide this type of
partial view of Behavior. The second partia view is of Function and Input/output.
Dataflow Diagrams, N-squared Charts, and IDEFO Charts provide this type of partia
view of behavior. The literature describing state charts refers to functions with the
word activities. The activities are modeled in a partial view of the executable behav-
ior and can be alocated to objects in the same manner as when using behavior dia-
grams.

3.10 Models and Text for Requirements/Specifications

Models and text capture the same basic information for requirements and specifica-
tions. Often requirements/specifications are written as “ The system shall do some
described task.” In this form it is an incomplete description for the implementer. To
be compl ete a requirement/specification in text needsto include;

» The name of the external system causing the excitation

93

Basics of Behavior

* What the external system does

* The outputs from the external system to the subject system

» All pertinent conditions

» What the subject system does in response

» All quantitative aspects of the response, how fast or how much
» The outputs from the subject system

» All pertinent conditions

» The names of the external systems which receive those outputs

Such acomplete statement is the equivalent to a behavior model for the external sys-
tem linked to the response from the subject system.

A similar close relationship exists between behavior models and the operations
concept in text. The operations concept describes in narrative form what the external
systems do and what the subject system does in response. They are written from the
standpoint of how one would experience the system rather than as alist. If one exe-
cutes, either mentally or by computer, alinked behavior modd of external system and
subject system, like Figure 3-13., Behavior Diagram for Pocket Knifein its context on
page 80, then atext description of what happens in the model is the operations con-

cept.

Thisredundancy is not wasteful. The requirements/specificationsin list form are
very useful for contractual purposes because they provide a check list of what the
implementer must deliver. The operations concept in narrative form provides a story
form of exactly what the system is supposed to do. It is very valuable for those who
are not going to immerse themselves in modeling. These text descriptions, however,
cannot be computer interpreted because they are in natural language text. They will
remain ambiguous because hatural language is not precise. The use of models aug-
ments the text forms by providing computer executabl e and transformabl e information
that is free from ambiguity and needed by the engineers who will design according to
the specifications. The art of engineering is to apply all these descriptionsin text and
models to the problem at hand with precision and without wasting engineering effort.
Itisan art.

3.11 Summary for Behavior

94

This chapter has described behavior with an informal approach and aformal approach.
We conclude with atextual definition of good practice in modeling.

Basics of Behavior

Behavior isarigorous description of what asystem isto do. It includes the func-

tions to be performed, the sequencing control of those functions and the inputs and
outputs from the functions. A good modeling approach for behavior keeps the behav-
ior information separate from the structure information. It also captures the behavior
information with enough rigor to allow the behavior to be executed and analyzed.

3.12 Exercises

1. ExamineFigure 3-7., FFBD for Person Using Pocket Knife on page 75.

a

b.

C.

Why are “Hold Work” and “ Operate Tool” concurrent.

If we add additional objects to the context, what other objects beside person
could be used for one or the ather of these functions?

Would the behavior model need to change because of the added objects? Why?

2. Modd aperson as your subject system in the context of getting, dishes from the
cupboard, food from the refrigerator, cooked food from the stove and placing these
items on the dinner table.

a

f.

Create the Object descriptions for each of the magjor objects. Include attributes
and functionsin each Object description.

Create a static context model for Person.

Create afunctional flow block diagram for the Person. Keep the functions con-
current if reality does not require a sequence.

Create a behavior diagram for the person.

Assign time estimates for each of the functions and make time line estimates
for the concurrent sets of functions.

Assign the work among three people to finish in minimum time.

Develop a behavior model for baking chocolate chip cookies.

Physically, it is possible to use pocket knifes in ways for which that they are not
designed.

a

b.

C.

What exceptions were not accounted for in the design?
How does the model need to change to reflect the exceptions?

Do the changes improve the usefulness of the model?

95

Basics of Behavior

3.13 References

96

Alford, Mack. 1977 A requirements engineering methodology for real time systems,
|EEE Transactions on Software Engineering, Vol. 1, No. 1

Alford, Mack. 1992. Strengthening the systems/software interface for real time sys-
tems, Proceedings of the Second International Symposium of the National Coun-
cil on Systems Engineering, Vol 1. 411, Seattle, WA.

Ascent Logic Corp. Product of Ascent Logic Corporation, 180 Rose Orchard Way,
San Jose, CA 95134.

Blanchard, BF and W. Fabrycky, 1990. Systems Engineering and Analysis, Second
Edition. Englewood Cliffs, N.J.: Prentice Hall.

Harel, D. 1987. Statecharts. A visua formalism for complex systems, Science of Com-
puter Programming, 8, 231-274

Hopcroft, J. E., and J. D. Ullman, 1979. Introduction to Automata Theory, Lan-
guages, and Computation, Reading, MA: Addison-Wesley

Kockler, Frank R. et a. 1990. Systems Engineering Management Guide, Defense Sys-
tems Management College, US Government Printing Office, 000802001202-5.

Martin, James and Carma McClure. 1985. Diagramming Techniques for Analysts and
Programmers. Englewood Cliffs, N.J: Prentice-Hall

Mealy, G. H. 1955. A Method for Synthesizing Sequential Circuits. Bell System Tech-
nical Journal, vol. 34, no 5, pp 1045-1079.

MIL-STD-499 1968 Functional Flow Diagrams, AFSCP 375-5 MIL-STD-499,
USAF, DI-S-3604/S-126-1, Form DD 1664, June 1968.

Moore, E. F. 1956. Gedanken experiments on sequential machines, Automata Sudies,
pp 129-153, Princeton, N.J.: Princeton University Press

Vitech Corp Product of Vitech Corporation, 2070 chain Bridge road, Vienna, VA
22182-2536

Yourdon, Edward. 1989 Modern Sructured Analysis. Englewood Cliffs, N.J: Yourdon
Press

Core Technical Process

4

Core Technical Process

4.1 Process

A processisthe sequence of actions done by people and machines. What engineers
do when they define acomplex system is the Systems Engineering Process. The engi-
neering process applied to complex systems has been described using text in books
and standards. This chapter solidifies these ideas and makes them explicit and rigor-
ous with models of behavior and views of behavior. The models separate and distin-
guish several different processes that are described in the field of complex systems:

The Product Life Cycle - The sequential phases of development and use
through which any product evolves.

The Systems Engineering Process - The ordered set of engineering steps that
engineers use to go from user needs to specifications for all of the components
to be designed or procured. Two sub-processes are considered: a Systems
Engineering Management Process and a Systems Engineering Technical Pro-
cess

The Acquisition Process - The set of tasks required of the product engineers
and manufacturers to assure those in authority that the project is meeting all
goals. There are numerous acquisition processes in use.

The Design Engineering Process - The ordered set of engineering steps that
engineersin the many design disciplines, such as mechanical, digital, and soft-
ware engineering, use to design their components.

The Manufacturing Process - The ordered set of implementation steps that
manufacturing engineers use to implement the manufacturing facility and to
produce the product.

Models can explain these processes in detail, show their relationships, and help engi-
neers follow the processes. Words like process and methodology are used with very
different meaningsin different organizations and disciplines. They are defined herein
away that is useful in discussing engineering activities.

97

Core Technical Process

The technical work of systems engineers, the technical process, is the focus of
this chapter. It will be described with asimple core process with afew major steps that
are applied repeatedly as the system specification develops. The repeated use of asin-
gle core process is powerful in practice, and it simplifies both training and tool con-
tent.

4.1.1 Process, Methodology, and Tools

98

1. Definition of Process. A processisan ordered set of work steps, done by peo-
ple and machines, that are utilized to produce a set of outputs from a set of
inputs.

It can be executed by people, machines, computers or a combination of these.

It comprises a complete description of the process which includes naming the
steps, describing how the steps are ordered, and describing the inputs and out-
puts among all of the steps.

» The description uses executable models of behavior.

» The models can be expressed in any graphic or text language that spans the
abstractions needed and that is executable.

» Thisprocess as defined here is called meta-process in some disciplines
where “meta’ means “ahigher form of”

» The meta-process model captures theinherent concurrency of steps that may
be performed in parallel and do not have to be performed in a particular
sequence

2. Definition of Methodology: A methodology is a particular implementation of a
process.

The stepsin the process are specified in great detail and alternatives in the
ordering of the work steps or in notation and views of information are removed
and standardized.

A methodology insures that alarge number of workers performing the same
processwill do each step in the same way. On large projectsthisis essential for
intercommunication among the people and ability to perform the work repro-
ducibly.

3. Déefinition of Tools: A tool isathing used by people to automate their work

Many tools are developed to automate a part of a single methodology

Core Technical Process

Sometools are developed to automate a meta-process and may be used inter-
changeably with a number of different methodologies.

Figure 4-1., Associations of Meta-Process, Methodology, Tools, and Infrastructure
shows the associations among meta-process, methodol ogy, tools, and infrastructure
for engineering complex systems. There are many systems Engineering M ethodol o-
gies which particularize, taylor, and instantiate the single Systems Engineering M eta-
Process. The figure shows that each Systems Engineering M ethodology defines a set
of views and notations that will be used as a standard by all the workers following
that methodology.

Meta-Process
Engineering
Systems

instantiate
notations
& views

s Engineering
defines Methodol ogy

automates

Systems Systems i Systems
Engineering generatesgl Engineering g-embedded in Engineering
Views & Notations Tool Infrastructure

Figure4-1. Associations of M eta-Process, M ethodology, Tools, and Infrastructure

The Tools are embedded in the Systems Engineering I nfrastructure of businesses and
customers.

Investment in training in methodology and tool use is required to make the
infrastructure effective and this is usually the most expensive investment. A plethora
of methodologies, views and notations exists at present. How they differ or are equiv-
aent is difficult to see by comparing them unless one can refer to a meta-process. At
present there exists a plethora of tools which automate parts of the many methodol o-
gies and the tools do not intercommunicate. Often a set of methodol ogies are chosen
that span the work, and the available tools are interconnected with custom interfaces

99

Core Technical Process

(Kronlof 1993, 11-12). For N toolsthere are N(N-1)/2 interfaces and the tools must
treat data with consistent meanings (semantics) and functionality. A new release of
any tool can affect (N-1) interfaces.

By learning what systems engineers do at the meta-processlevel it is possible to
understand what are the possible useful views of information and how the methodolo-
giesare similar and different. In “Basics of Behavior” on page 67, we described the
possible views of information. Tool integration requires that the same piece of infor-
mation always be used with the same meaning by all thetools. A well defined process
description is a prerequisite for integration.

4.1.2 Product Life Cycle, Acquisition, Systems Engineering Process

100

The systems engineering process describes the engineering work steps. It isapplied at
many of the phases of the product life cycle which describes the phases or steps
through which a product evolves. There is often a blurring of the distinction between
the systems engineering process and the product life cycle phases.

It is helpful to decompose the systems engineering process into two sub-pro-
cesses, a management process and a technical process, which can be discussed sepa-
rately. Figure 2-2., Part List for System Engineering Process shows one level of this
decomposition.

stems
ngineering
Process

i

[|

stems stems
ngineering ngineering
M anagement Technical
Process Process

Figure2-2. Part List for System Engineering Process

The acquisition process is the process used by government or a company to
acquire product from a supplier. The systems engineering process generates the docu-
ments required by the acquisition process. Often the engineering steps executed are
driven by the need to produce documents. Best practice dictates generating the docu-
ments required by the acquisition process from the needed engineering steps.

Core Technical Process

The basic relationships among Product Life Cycle, Acquisition Process and
Systems Engineering Process are clarified in Figure 4-3., Associations of Process,
Product Life Cycle and Acquisition.

Systems Engineering
Design Engineering M anagement
Discipline Process

provides detailed supports planning, review,
specifications resolution of issues

Systems Engineering

reports Technical reports

specifications | Process specifications

according to according to
supports and

Foecifies product

Product
Life
Cycle
use use
Government Business
hasa
hasa
Government Commercial
Acquisition Acquisition
Process Process

Figure4-3. Associations of Process, Product Life Cycleand Acquisition

Thisfigure asserts that thereis a single Product Life Cycle that is used by both Gov-
ernment and Business. Although different industries name the parts of the product life
cycledifferently and have different degrees of emphasis on different phases, products
go through the following phases:
1. Domain Analysis Phase: Domain Analysisto define a product line and reus-
ability strategies for products or product components.

101

Core Technical Process

102

2. Concept Phase: Concept Analysis to define a business strategy, a product con-
cept and establish its value to users.

3. System Phase: System Analysisto define and specify the product, its compo-
nents, and cost and performance

4. Feasibility Phase: Detailed component design, implementation, and integration
for an engineering model, a prototype, or partial prototypes sufficient to show
performance and manufacturing feasibility.

5. Initial Manufacture Phase: Low volume manufacture in pre-production vol-
umes with release of product to customers (perhaps selected customers). In the
commercial world thisisthefirst point at which customer response can be mea-
sured and product success can be estimated based on actual response. It isthe
first point for revenue payback on the development investment for businesses
which define and market their own products.

6. Full Scae Manufacture Phase: Full scale manufacture and shipping of product
to customers. It includes field support and product enhancement.

7. Field Support Phase: Customers are notified that manufacture has stopped and
that field support with spare parts continues.

8. Product Removal Phase: Product is removed from the market place, perhaps
with incentivesto customers. It is often replaced with a more advanced product
which isin Phase 5. Product disposal occurs, sometimesin an ecologically
sound manner.

The Product Life Cycleis used by the government and by many commercial busi-
nesses. It isa process, atime ordered set of phases, a behavior.

The Systems Engineering Technical Process is the engineering work that sup-
ports and specifies the product in al the phases of the Product Life Cycle - specifica-
tion, cost and performance from Domain to Concept through Product Removal. The
core stepsin the Technical Systems Engineering Process are performed repeatedly and
are concentrated in the early Product Life Cycle Phases: 1. Domain Analysis Phase, 2.
Concept Phase and 3. System Phase. If there are changes or problems during later
phases, this technical work will have to be revisited during the later phases.

The many different Acquisition Processes, both commercia and government,
reguire reports of technical progress to assure those with authority that the project is
progressing satisfactorily. These documents are not the systems engineering technical
work. They are generated from the information produced by the Systems Engineering
Technical Process. They vary tremendously in content, level of detail, and format.

The Systems Engineering Management Process supports the Systems Engineer-
ing Technical Process with planning, review, and coordination of issue resolution. It
makes it work.

Core Technical Process

The Systems Engineering Technical Process deliversall of its detailed technical
engineering specifications to the many different Design Engineering Disciplines
which will perform the detailed design of the mechanical, electrical, digital, software,
and people components for the system. The specifications need to be complete and
correct. They need to be delivered in the set of views and notations of the designers.

In going from user needs to the specifications to the designers, any large com-
plex system is decomposed into a set of parts, atree of several tiers of decomposition.
A core set of engineering steps are applied repeatedly to the subsystems and compo-
nents at each of thesetiers.

4.1.3 The Systems Engineering Process Model
Any process, whether used for systems engineering, for semiconductor chip manufac-
ture, for business marketing, or for cooking food can be described as abehavior. This
involvesthe steps that are taken, the inputs and outputs for each step, and the ordering
of the steps. In order to clarify the Systems Engineering Process yet keep the figures
simple, the process will be described with a Functional Flow Block Diagram view
that shows the steps and their ordering.

The Systems Engineering Management Process is broken into three pieces:
project planning, review and replanning, and change control. Correspondingly, there
are a set of six modeling steps, core steps, in the Systems Engineering Technical Pro-
cess that defineit. They are used repeatedly as the system is decomposed into sub-
systems and then sub-sub-systems. Figure 4-4., Extended Part List for System Engi-
neering Process shows these associations as a parts list.

103

Core Technical Process

104

stems
ngineering
Process
[|
stems stems
ngineering ngineering
Management Technical
Process Process
! i
| | Systems
stems stems stems Engineering
ngineering ngineerin ngineering Core Technical
Project Review an Change Process
Planning Replanning Control
Process Process Process
| | [| | |
Assess Define Create Create Perform Create
Available Effectiveness | | Behavior Structure Trade-off Sequential
Information Measures Model Model Analysis Build &
Test Plan
Figure4-4. Extended Part List for System Engineering Process

Systems Engineering Management Tasks
The Systems Engineering Management Process is built from three major sub-sub-pro-
cesses which are ordered as shown in Figure 4-5., Model for the System Engineering
Process. These three sub-sub-processes are:
1. Project Planning Process

Creates an initia systems engineering management plan, SEMP, for the project
defining tasks, resources, resource assignments, milestones, costs and schedule
at each milestone.

The SEMP isahigh level plan which requires additional detail as the project
evolves

The SEMP schedules the deliverable items required by the Acquisition Process

Core Technical Process

The SEMP must be modified as the market changes, customers change what
they want, engineers and others discover issues which require achange in the
plan to resolve the issues. The next two processes address these changes.

2. Project Review and Replanning Process

This process monitors the planned forward tasks and team performance for the
systems engineering technical work, the design, the implementation and inte-
gration of components and the validation of the system.

This process provides the reviews as required by the evolving SEMP. The
reviews are both frequent and fine grain at the level of contributing engineers,
and periodic and high level for customers and management.

The purpose of review isto discover issues as early as possible so that they
may be evaluated and corrected as early as possible to limit their cost and
delay.

This process modifies the SEMP as the appropriate resolution of issuesis dis-
covered.

3. Change Control Process

Thisisareverse process. It anayzes the impact of the issues discovered and
establishes how resource must be redirected and to what extent work aready
completed must be revisited and modified.

Effortsasfar along as step 6., integrate components, may have to be redirected
back to step 4. if requirements are atered late in the project.

Figure 4-5., Model for the System Engineering Process, is afunctional flow
block diagram view of behavior. The FFBD shows the steps of the Systems Engineer-
ing Management Process as dark blocks, and the steps of the Systems Engineering
Technical Process as awhite block. There are design and implementation steps which
are executed by other engineering and manufacturing disciplines. These steps are
shown in blocks 5. and 6. of medium darkness. The Systems Engineering Manage-
ment Process assi sts these two steps with resources, planning and resolution of sys-
tem level issues.

105

Core Technical Process

Iterate twice each tier,
over all tiers

-

|-

5. 6.
Perform SE Perform Integrate
Core Technical—®{ HW, SW, Human | Components
Process Component & Validate
Design and
Implementation
1. 3
Perform Perf .
: . orm
Project Change Q”d
Planning Control
2.
Perform
Review &
Replanning

Engineering Technical Tasks led and performed by systems engineering
with other specialties in concurrent team

Engineering Management Tasks, coordination, performed by systems engineering
with other engineering disciplines

Tasks performed by other engineering disciplines, manufacturing, and
field service planned and coordinated by systems engineering

Figure4-5. Modéd for the System Engineering Process

Because of the existence of the issues and the Change Control Process thereis awell
defined way to analyze the impact of any issue, modify the engineering, manufactur-
ing, and integration work. The changes are captured by replanning and adjusting
reviews.

It isnot possibleto show all of the possible feedback arrows from later effortsto
earlier efforts because they may start anywhere and go back anywhere depending
upon the issue.

106

Core Technical Process

The steps of the systems engineering process are applied most intensively to the
first five phases of the Product Life Cycle: Domain Phase, Concept Phase through
Initial Manufacturing Phase. Systems engineering management tasks or technical
tasks may be required during the latter three phases of the Product Life Cycle, Full
Scale Manufacture through Product Removal, when system level issues arise.

Systems Engineering Technical Tasks

The Systems Engineering Core Technical Processis applied iteratively at each tier of
the product decomposition. The Core Technical Processis applied successively to the
business using the product, to the product, to the product subsystems, the product
sub-subsystems until specifications are available for the components to be designed
by the different engineering specialities. At each tier the processis applied twice: first
to analyze the context of the subject under study and second to analyze the subject
itself for decomposing it into components.

The Systems Engineering Core Technical Processis composed of six major
steps which are discussed in detail in the next section.

4.2 The Core Technical Process

Figure 4-5., Model for the System Engineering Process, shows how the core technical
process serves as one of the steps in the systems engineering process. It is applied
repeatedly at al tiers of the system part tree. It is applied twice each tier; once to the
context and once to design the system in terms of its subsystems. From the view-
point of the product life cycleit is applied repeatedly from domain and concept anal-
ysis through definition of individual components.

Figure 4-6., FFBD View for the System Engineering Core Technical Process,
shows the order of the six engineering modeling steps that make up the core technical
process.

107

Core Technical Process

Iterate to Find a Feasible Solution

4.2
Define |
Effectiveness
Measures No Feasible
Solution

41 43 45 46
> Assess —»@9» Create || Perform | pw!{ Creste |p»

Available Behavior Trade-Off | Feasible| Sequential
Information Model Analysis Solution Build
& Test Plan
4.4
Create
— Structure [~
Model

Figure4-6. FFBD View for the System Engineering Core Technical Process

4.2.1 The Six Steps in the Core Technical Process

108

The six steps accomplish the following tasks:
1. evaluates and categorizes available information and obtains missing informa-

tion.

. definesthe criteriafor optimization, the effectiveness measures. These are a

small subset of all the requirements; perhapsthree to fifteen in number even for
large complex systems. They are the criteria that mean success or failure.

3. definesthe behavior that is desired with an executable model.

. defines executabl e structure models of the alternative sets of things, objects,

from which to build the system. In either step 4.3 or step 4.4 an alocation of
behavior onto objectsis made. Different sets of objects can be used to build the
system and for any of these sets the behavior can be partitioned among the
objectsin many different ways. These alternatives produce a number of alterna-
tive designs, or architectures.

. trade-off, selects among the alternative designs or architectures. Any design to

be feasible must meet all of the performance requirements at system level. The
best feasible design is selected based on the effectiveness measure values. This
is the optimization process. It is a key best practice in the engineering of com-
plex systems. One possible branch from Step 5 is an iteration back to the begin-
ning made necessary by no alternative design or architecture meeting the

Core Technical Process

requirements. When this occurs, the steps 1 - 5 are repeated to find feasible
solutions, or requirements are relaxed so that a previous non-feasible solution
is accepted, or the project is terminated for budget and schedule overrun, or
simple impossibility.

6. createsaplan, when afeasible and near optimal design or architecture has
been found. It provides an implementation plan for the selected design or
architecture. The plan takes into account identified issues, successive product
releases, risk remediation, partial builds for early validation, time to market,
budget, and available resources.

Steps 2, 3, and 4 are concurrent activities. They can be ordered and some methodolo-
giesdo this. In practice it is found that engineers move their attention among these
three tasks. Asunderstanding progressesin one of the tasks, it suggests changesin the
other two.

These six core steps in the Core Technical Process are not applied once for com-
plex systems, but twice each tier over al tiers of the system part tree. These core steps
are described in more detail below. A chapter is devoted to each of them to define the
subsets they contain and to illustrate the work with an example. Each chapter pro-
vides an information model (structure of the information item associations) for each
of the steps.

Assess Available Information

Thefirst step isto Assess Available Information. That information may be in text
form, in rigorous models, or in the minds of a collection of potential users of the sys-
tem. This step involves collecting available information and categorizing it in terms
of its source, its quality (what iswrong with it), and how it isto be used. Additional
information is gathered if necessary. The information is upgraded and corrected as
necessary. If prior work has been done thoroughly and rigorously with modeling,
there is aminimum of activity in this step.

If theinformation is provided in the form of rigorous executable models there
will be a context model both static and dynamic for the system or components under
consideration. These models will include the interfaces associated with assembly of
the components to make a whole, the excitations of the system or components, the
conditions under which this occurs, and the responses to those excitations.

When the available information has been assessed the next steps in the Core
Process are undertaken. The next three steps are interdependent and they are carried
out concurrently.

109

Core Technical Process

110

Define Effectiveness Measures

Effectiveness Measures are the small subset of the requirements that are so important
that the system will fail if they are not met and will be a hugh successiif they are met.
They are the criteria used to make the trade-off decisions of what to build. The design
of asystemisan ill posed problem that has no solution without a set of criteriato
guide choices. They correspond to the regularization functions used in optimal control
or in calculus of variations.

The effectiveness measures are critically important because they are the criteria
that drive the system solution that isfound. They are critical because all the stakehol d-
ers - engineers, management, users and operators - must agree on them or there will be
future problems. If these criteria are not both correct and agreed to, then the system
development will be plagued with costly requirements changes and may miss its mar-
ket. The effectiveness measure results are extremely useful in reviews with manage-
ment, users and operators who do not want to know all of the technical engineering
detail but do want to know about these critical system criteria.

Effectiveness measures are ranked by a set of priorities that can be established
by statistically valid methods (Saaty 1983). The effectiveness measure values are
either computed from the properties of the system components and their behavior, or
are established by group surveys which establish user preferences. The computations
are based on mathematical models that use values of attributes.

Create Behavior Model

In systems engineering the system is described with separate views of behavior and
structure so that alternative designs can be found by reallocating behavior among
objects.

The behavior model captures what any thing, or object isto do. It contains
enough information to be executable. The model must capture all of the steps or func-
tionsinvolved in the behavior, how the functions are ordered, and all of the inputs and
outputs of the functions. If the ordering of the functions allows alternative responses
(paths) then the conditions for the alternative paths must be captured.

When the six core steps are applied to context, the behavior of the external sys-
tems which excite the subject system is captured. The response of the subject system
to these excitations is also captured as a behavior. The excitations and responses con-
stitute the functional requirements for the subject system.

When the six core steps are applied to the subject system, the behavior model
refines the behavior of the subject system in greater detail. The level of detail must be
sufficient to allow the subject system behavior to be partitioned among subsystems
from which the subject system will be built.

It is the structure model that describes the structure of the context and the design
of the subject system.

Core Technical Process

Create Structure Model

This core engineering step captures static structure of the system context or of the
subject system or of the components of the system. Static structure involves the
description of things, objects and their associations. Thisinformation is recorded in
text and graphically as described in “Basics of Structure” on page 35.

Because large complex systems are built from thousands or hundreds of thou-
sands of parts, the Structure Model is developed hierarchically. The hierarchy is
treated in the next section of this chapter.

At the system level, important performance characteristics are known for the
system, i.e. acceleration for a car. The performance requirement of acceleration
depends upon the properties of components from which it is built, like engine horse-
power, transmission ratios, and total car weight. All of the attributes important to per-
formance must be captured in the object descriptions of the parts, weight for al parts,
horsepower for engine, etc. Budgeted values for these attributes must be supplied for
designersto use as design targets.

This step usually produces alternative sets of objects which could be used and
aternative ways of alocating the desired behavior, from step 4.3, among the objects.
Alternative designs and architectures emerge form the completion of all three steps:
2,3, and 4.

Perform Trade-Off Analysis

It isin trade-off analysis that the performance requirements and the effectiveness
measures are evaluated at system level. The objective is not the optimization of indi-
vidual components, but the optimization of the system. The attributes, properties of
the components are used to calculate the system level performance and effectiveness
for the alternatives that have been found in the previous steps

Each component has a set of attributes like cost, weight, reliability, power con-
sumption, or heat dissipation. These attributes are the arguments of the eguations for
calculating both performance and Effectiveness M easures. During Trade-Off Analy-
sisvalues must be obtained for every attribute of every component. Thisis done with
the following order of priority because of reliability of the values. It is done first by
measurement of actual parts, second by simulation, and third by estimation. It isin
this core step that physical simulation is performed to get at performance using the
laws of physics, chemistry, logic, and biology. Simulation is performed to get the val-
ues needed for attributes that are part of the performance and effectiveness calcula-
tions. When the attribute values are available, performance is calculated at system
level. It isimportant to optimize the system rather than the components. The alterna-
tive architectures or designs that do not meet performance requirements are dis-
carded; they are not feasible. Those that meet performance requirements are feasible
and one must select among them.

111

Core Technical Process

112

This selection is done by calculating the Effectiveness M easures and using them
as the criteriafor selecting anear optimal architecture.

When a near optimal architecture is established, it is necessary to examine
implementation issues. Implementation issues arise in applying the core steps to the
system context and to the system itself. They occur at al of thetiers of development.

Iterate to Find a Feasible Solution

Iteration may be performed for several reasons.

First, afeasible solution may not be found among the architectures that were
established as aternativesin the earlier steps.

Second, the engineering work may be partitioned among several teamsfor a
large system, and each team may iterate through the partial portions of the system for
which it has responsibility as an intermediate engineering step to refine their own
work to amodest number of alternatives. Unless the contributions of the several teams
are combined and a system level trade-off is done, this approach will lead to sub-opti-
mization of components rather than to system optimization.

Create Implementation, Sequential Build, and Test Plan

This step controls prototyping, risk, and getting to market. It is created to account for a
set of Business Redlities.

There are severa reasons for considering implementation. In some cases the
resources available and the time to market dictate the partitioning of the System into
several piecesthat will be sequentially released to the marketplace as a set of products
ar aseries of releases. In some cases the technical work uncovers business opportuni-
ties or aneed for partnership with other businesses that must be examined in parallel
with the technical development and incorporated in the overall planning.

In many cases certain portions of the development are high risk. The plans for
these portions need to be advanced in time with alternatives planned to accommodate
the risks.

For large complex systemsit is often an advantage to assemble partial builds of
the system which can be used for early validation of critical threads through the sys-
tem and for early use of parts of the system in protected and controlled circumstances.

Theimplementation plan is adjusted to encompass and compromise among all of
these needs. The Sequential Build and Test Plan provides the ordering of the build and
the test of Components, which may be built completely or partially. The components
are assembled to create the system and the responses of the System are measured to
validate the implementation.

Core Technical Process

The Seguential Build and Test Plan isincorporated in the Systems Engineering
Management Plan. The regular inclusion of this step in the Core Technical Process
forces a periodic updating of the SEMP at the time that the project devel ops new
valid information.

Application at Each Tier.

It isimportant to recognize that this optimizing process applies to both the system
context and to the subject system itself. Some of the most important trade-off deci-
sionsfor cost, performance and market acceptance involve trades of what things
belong in the system rather than outside the system and what behavior will be in the
system rather than in an external system outside it.

The same core engineering steps are used for analyzing context and for analyz-
ing the subject: system, subsystem, sub-sub-system., as shown in Figure 4-7.,
Sequential Application of Core Technical Processto Context and Subject. The
sequential analysis of context and of subject are applied at each tier of engineering
decomposition, for domain analysis, concept analysis, system reguirements and syn-
thesis, subsystem analysis, etc.

<——— AnalyzeContext ——P» <—— Analyze Subject ———P»

. SU%GCI
Architecture/Design Model,
Performance
A Sub-subject
\ (Requirements
\ Model
b 4
5 1>{6 ={ L= .
l 1 \

v /
/
Context _ Subject
Implementatio Implementatiol
Plan Plan

Figure4-7. Sequential Application of Core Technical Processto Context and Subject

Initial
Context
In%?prg%ton Architecture/Design Model,

Requirements

\

L3

113

Core Technical Process

4.3

Hierarchy

Systems engineering isinherently hierarchical. A hierarchy of partsis afundamental
abstraction that people use naturaly to their ssimplify thinking about things. This
abstraction allows usto think about a car asawhole, or to think about its parts, like the
engine, or to think about subparts like afuel injector.

4.3.1 Small Systems vs. Large Systems

The development of small systems can be accomplished with a handful of engineers
who can intercommunicate frequently and jointly track all of the aspects of the devel-
opment. The outputs, subject architecture/design model, subject performance, subject
implementation plan, and sub-subject requirements model fully define the context of
each of the sub-subjects.

In the development of large complex systems the core technical process needsto
be applied twice in each tier, because of the expansion of parts and of engineering
teams. The number of partsin atier increases exponentially as the development moves
from tier to tier. In large system developments there is a corresponding increase in the
number of engineering teams applied. These teams receive context, behavior and
regquirement information for their part of the system from other teams which devel-
oped the information at the tier above. It isimportant that the receiving team use the
core technical processto thoroughly review the information received. It isimportant
for them to correlate their information with that of other teams working on parts that
interface with their part.

A small team developing a small system can track all of the information and
eliminate most of these reviews.

4.3.2 Tiers of Hierarchy

114

Hierarchy isapplied in aparticularly useful way in systems engineering. At each level
or tier of the hierarchy something different is studied and both Context Analysis and
Design and System Analysis and Design are performed at each tier for large systems.
It is necessary to use several tiers of context analysis and design and of system analy-
sisand design because there are several different questions which need to be answered
for any product. These questions must be answered by analyzing different things at
different levels or tiers of the parts hierarchy: Concept, System, Sub-system, etc. The
questions are:

Core Technical Process

Concept Tier: Core Process applied to the business using my product to estab-
lish what my product should be to enhance the business.

» How does the business change when my product is incorporated?
What value does my product have to the business or user for whichiit is
being developed?
» Arethere product segments which are valuable to the customer which had
not been identified and that my product should address?

* Which are the most valuable product segments to the customer and what is
their value?

» Inwhat sequence do the product segments have to be introduced to the cus-
tomer to get the product installed? Low value segments may haveto be
installed before high value segments can be made to work.

What is the emergent behavior (effectiveness measures) of my product, sys-
tem, for high value to user,?

What things and behavior belong inside my product?
With what does my product interface, its context?

System Tier: Core Process applied to my product. Use to review context and
reguirements. Use to create product design.

* Review product context received from Concept Tier
» Review the emergent behavior the product must exhibit (requirements)
received from Concept Tier
» The emergent behavior (requirements) is reviewed through the analysis of
the system context, statically and dynamically using the core technical pro-
cess
What is the product design?

» The product design defines the components (subsystems) which comprise
the product and the behavior (requirements) of each subsystem

115

Core Technical Process

116

» Sub-System Tier: Core Process applied to my product’s subsystems. Use to
review context and requirements. Use to create product subsystem designs.

* Review product subsystems context received from System Tier

» Review the emergent behaviors the product subsystems must exhibit
(requirements) received from System Tier

» The emergent behavior (requirements) is reviewed through the analysis of
the sub-system context, statically and dynamically using the core technical
process

* What is the emergent behavior the product sub-sub-systems must exhibit
(requirements)

» What are the product sub-system designs?

» The sub-system design defines the components (sub-sub-systems) which
comprise the sub-system and the behavior (requirements) of each sub-sub-
system

The hierarchy continues until it is possible to separate out the components that are
hardware, software, and people - users and operators of the systems. So long as the
components are composed of combinations of mechanical, electrical, digital, software
things, and of people, it isnot possible to provide requirements to the different engi-
neering disciplines that do the detailed design and implementation.

When the requirements for hardware, software, and people components can be
described separately, they are transmitted to the respective engineering design and
implementation teams. Note that the systems engineering team needs to contain engi-
neers who are expert in the relevant hardware, software and people engineering disci-
plines. This description of hierarchy is summarized in tabular form in Table 1.

The table contains an additional tier, the Domain Tier. Thisisthetier of engi-
neering work that develops afamily of products rather than single point products. It
produces design for reusability. The subject system under engineering analysisisa
domain or set of businesses or users using our product. The businessesin the domain
may be very different but able to profit from a common capability. The domain of
businesses may be a single focused type of business studied at different points of time
in its future evolution.

Core Technical Process

Domain Tier: Core Technical Process applied to model each businessin the

domain with my product in the business

» What value does my product have to a collection of businesses or users

which could benefit from it?

Are there product segments which are valuable to multiple businesses or
users?

Which are the most val uable product segments to the multiple businesses or
users and what is their value?

Am | designing my product so that it separates into segments that can be
sold to multiple businesses?

In what sequence do the product segments have to be introduced to the
multiple businesses or users to get the product installed? Low value seg-
ments may haveto be installed before high value segments can be made to
work.

Is my product family adaptable to meet avariety of price and performance
targets?

The same core processisused at al tiers. What changesiswhat the processis applied
to. At each tier there is a subject system to which the core technical processis
applied. At each tier the subject system interfaces with external systemsin its envi-
ronment to establish its context. At each tier the subject system is decomposed into its
parts, or, if working bottom up, the subject system is synthesized from its parts. At
each tier there are some major questions to be resolved as summarized in the output
column of Table 1., Tiers.

. Subject External
Tier System Systems Components Output
Domain Tier Collection of Customer sup- | Our product Dollar value,
customer busi- | pliersand his | and product Requirements
nesses Customers segments for Product
which can be lineor Library
reused of components
Concept Tier Customer Customer sup- | Our product Dollar valueto
businesswith | pliersand his | and Customer | Customer
our Productin | Customers business seg- Business &
it ments our Product
context and
Behavior
Table 1: Tiers

117

Core Technical Process

. Subject External
Tier System Systems Components Output
System Tier Our Product Customer Our Product Product Seg-
business seg- Segments ment require-
ments ments, System
Performance
& Cost Targets
Sub-system One of Our Customer and | Our Product Sub-segment
Tier Product Seg- Our other Seg- | Sub-Segments | specifications
ments ments & System per-
formance
Continue until Hardware, Software and People components are separated.
HW, SW & One of Our Other HW, The sub-com- HW & SW &
People HW, SW or SW and Peo- ponents People compo-
Requirements | Peoplecompo- | ple compo- nent Require-
Tier nents nents ments &
System Perfor-
mance
Table 1: Tiers

4.3.3 Hierarchy, Waterfall, Top Down Development

118

The fact that systems engineering isinherently hierarchical does not imply that the
work must proceed top down or according to awaterfall model. The work is hierarchi-
cal because it focuses on questions and generates results that can only be obtained by
analyzing different levels of detail: collection of businesses, a business, a product,
segments of the product, sub-segments, etc. Depending upon the application the work
may proceed top down or bottom up, or top down simultaneously with bottom up,
meet in the middle and finish.

Most development activities do not start with a clean sheet and atotally new
product. Most devel opments are extensions of earlier systems or additionsto an earlier
system. In these cases the work is highly constrained to afew new or modified compo-
nents and many of the existing interfaces must be maintained. Such projects are both
top down and bottom up and may involve re-engineering and reverse engineering if
the existing system is not fully documented in its present state.

In all of these cases the systems engineers will very likely work at several differ-
ent tiers of decomposition. They will need to apply both context analysis and design
and system analysis and design at the various tiers unless there is complete existing
information available to them.

Core Technical Process

4.4 Re-Engineering

Re-engineering of large complex systems is often required because hardware compo-
nents have become obsol ete or unavailable, or because the software in the system has
been made unmanageable in a cost effective way. The most complex situations are
those in which support information for the existing system is totally out of date with
changes made to the system and yet the system must be kept functioning without
down time through the new system introduction and change over. A major issueisthe
lack of correct higher level documentation.

Under these conditions, the work shown in Figure 4-5., Model for the System
Engineering Process on page 106, proceeds as described earlier. It devel ops new
specification from the current user needs. This provides information about how the
system is used and about extensions which must be added to provide new capability.
In paralel with thiswork it is necessary to reverse engineer the existing system to
replace the missing information. The reverse engineering does not need to replace the
old documentation of structure of the existing system because that structure will be
replaced in the new design. The reverse engineering needs to extract higher level
behavior from the available lower level details.

Thisisaparticularly difficult problem for many older software components.
Many of them have been constructed with methodol ogies which distribute the high
level behavior widely through the software. Reverse engineering is a current topic of
study and tools to help with the issues are emerging. It can be accomplished manually
by tracing responses through the system and extracting high level logica units of
behavior.

When the forward Systems Technical Process results meet the Reverse Engi-
neering results in the middle, then the work can continue systematically with a com-
bination of hew components and reverse engineered components.

A magjor advantage of the systematic approach presented hereisthat it provides
for thorough documentation in models. Domain analysisisincluded in the systematic
approach to design in documented reusable products and components where the cost
of the domain work isjustified. With thorough documentation with models the
reverse engineering is avoided and re-engineering is simplified and practical.

45 Behavior Model for the Core Technical Process

For completeness, Figure 4-1., Associations of Meta-Process, Methodology, Tools,
and Infrastructure adds input and output to Figure 4-6., FFBD View for the System
Engineering Core Technical Process on page 108 to provide a behavior modd for the
core technical process.

119

Core Technical Process

Corrected,
Categorized
Information

Effectiveness Measures
Subsidiary Equations
Priorities

* 1

\

/
| o).

No Feasible
Solution /
/
Near Optimal

Architecture
or Design

™~ —~—
-~ — _ _ Business
- Redlities

Figure 4-8. Behavior Model for the System Engineering Core Technical Process

‘ / T /
Yo iz 14 7 :
/ \ Define | / @
/ \ Effectiveness| |/ Voo /
/ \ Measures y
V I \ * ‘ ‘ / /
4.1 4.3 4.5 4.6
> Assess [B(AND Create [+ Perform Create g
Available Behavior Trade-Off | Feasible| Sequential
Infqrmation Model \ AnalysisA Solution Build
& Test Plan

| 4.4 Map of A
\ St?[]ecﬁjere] Functions |

\ Model | 4%

N g /
AN ~
N RN Alt i
N - ernative
~ Designs or
~ Architectures /
~
~

|

4.6

Union of Best Practice with Modeling

Systems Engineering best practices have been developing for hundreds of years and
experienced rapid advance and codification in the 1950’s and 60’s for complex sys-
tems. The best practicesincorporate strong emphasis on optimization and trade-off for

the system performance.

Other emerging disciplines, such as software engineering and mechanical engi-
neering have emphasized rigorous modeling and automated transformations of com-
plex design information. Many of the methodol ogies applied to software engineering

120

Core Technical Process

lack the engineering steps used for trade-off: definition of effectiveness measures,
trade-off, and creation of a sequential build and test plan (Oliver 1995). Some do not
incorporate the capture of concurrency (Selic, Gulekson and Ward 1994).

The model based approach described here merges the best practices of the sys-

tem engineering of complex systems with the use of rigorous modeling and auto-
mated transformation of complex design information prevalent in other disciplines.

The following six chapters describe each of the modeling stepsin the core pro-

cess in more detail. In the course of these discussions it will be necessary to classify
things like requirements to show how different types are captured in the models and
associated with other information items.

4.7 Exercises

1. Apply the Core Technical processto the metal knife assembly of the six-blade
pocket knife example. Use the examples of Chapters Two and Three as available
information. Reuse directly as much of the available information as possible.

2.

a

Assesstheinitial information available. Identify missing information. Classify
the kinds of information.

Create a static and dynamic context for the metal knife assembly.

Create effectiveness measures for the knife which would help it dominate its
market.

Create a structure model for the metal knife assembly. Will thiswill include an
interconnection model of the parts.

Create a behavior model for the metal knife assembly.
Allocate functions between the behavior and interconnection models.

Include all important attributes in the object descriptions of each part and bud-
get attribute values to the attributes.

Identify the work you would do to extend this description to an entire product
line of knives. Identify the domain involved in that work.

What effects on the design would result from making the three parallel core steps

occur serially?

121

Core Technical Process

4.8 References

Kronlof, Klaus 1993 Method Integration: Concepts and Case Sudies. Chichester:
John Wiley & Sons

Oliver, David W. 1995. Systems engineering & software engineering, contrasts and
synergies, Fifth Annual International Symposium National Council on Systems
Engineering K. Louis, MO. Vol. I, 701-708.

Saaty, Thomas L. 1983. Priority setting in complex problems, |EEE Trans. on Engr.
Management. EM-30: 140-155.

Sdlic, Ben, Garth Gulekson, and Paul T. Ward, 1994. Real-Time Object-Oriented
Modeling, pp. 484-486, John Wiley & SonsInc.

122

Assess Available Information

d

Assess Avallable Information

5.1 What Core Step 1 Is

This chapter describes how to receive and assess the information that is made avail-
able to a systems engineering team. If the team is trained in modeling, the informa-
tion available from users, operators, heritage systems, clients, and marketing can be
captured in models as described in the succeeding chapters. Both the process and the
system descriptions that result are rigorous. In assessing the available information,
systems engineering teams must:

» Collect the existing information

e Combine all collateral information, including change documents which may
be received during the collection period.

» Classify problems, define issues, and trace requirementsto origin

* Resolveissues

* Generate and review requirements database and operations concept.
» Correct any problems in the engineering database.

Along the way systems engineers must overcome anumber of problems. Not the | east
of these is the manner in which the information arrives. The most common form for
systems engineersto receive their information isin large complex text documents.
Frequently the requirements will be mixed with other forms of information which
must be separated. The separated requirements may be redundant, contradictory,
incorrect, incomplete, unverifiable, and poorly written. The other primary source of
information is heritage systems which typically were not designed with any rigorous
methodology and have little readily usable information available without reverse
engineering the existing product.

This chapter describes a classification, ataxonomy, for natural language text
requirements to provide a consistent basis for discussing them. It describes relation-
ships among them. It goes on to provide a detailed process for carrying out a com-
plete assessment and classification of the text materia. Thisis difficult work when
the text is thousands of pages.

123

Assess Available Information

5.2

124

The systems engineering best practice defined in this book describes how the
text can be augmented with executable models which will be rigorous and supported
by computer tools when that modeling work is funded and encouraged by manage-
ment. Management acceptance of time spent in the up-front modeling processis
essential to overall success of the methodology. While great lip service is often given
to these phases, the temptation is great to do a makeshift job in order to get to “the
important stuff.”

If the information is provided in the form of rigorous executable models, there
will be a context model, both static and dynamic, for the system or components under
consideration. These models will include the interconnections and interfaces associ-
ated with assembly of the components to make awhole, the excitations of the system
or components, the conditions under which this occurs, and the responses to those
excitations. These models are reviewed by applying the technical core processto
them. This enables engineers to use their experience and creativity to find the
unknown missing things, “unknown-unknowns’. If the executable models have been
captured in automated tools, the tools can be used to check for consistency and cor-
rectness of the models. This procedure will find errorsin complex detailsthat are hard
for engineersto spot otherwise. The expense of correcting an “unknown-unknown”
error issmall in the earliest stages of development, and very large in late stages. Both
automate checking of models, and review by experienced and creative engineers are
essential to find errors early. This chapter is about the review and early correction of
the available information.

A Requirements Taxonomy

We first develop ataxonomy which is used to categorize the requirements as they are
encountered and devel oped.

At any point of time in a project the engineers deal with two kinds of informa-
tion: the Initial Information at the beginning of the project and the Developed Infor-
mation created during the project. Initial Information received at the beginning of a
project is often largely in the form of text. It consists of Text Requirements, Heritage
Information, User Information, Text Operations Concepts, and Models. These associa
tions are shown in Figure 5-1., Associations of Available Information.

Assess Available Information

Available
Information

A

[

Initial
Information

¢

.

.

]

Developed
Information

Initia! Text Heritage Initia
Requirement Information Model
- @
Initial Text
h User
Operations ;
Concept Information
narrate

traceto

Figure 5-1. Associationsof Available I nformation

The Text Requirements trace to the models. Exactly how they trace into the severa
kinds of modeling elements depends upon what kind of requirements they are. Types
of requirements will have to be developed. The Text Operations Concept narrates the
excitation response interactions among the subject System and the External Systems
with which it interacts. The Text Requirements are classified in three important,
ways:

1. By their origin,

2. By thework to be done to fix them, and
3. By their use.

When engineers identify and classify requirements, they can create the needed trace-
ability links for the requirements and correct the identified problems discovered
among them. Figure 5-2., Classification of Text Requirementsis an information
model showing this classification for text requirement. Note that these three classifi-
cations are independent.

A single requirement may be, for example, Original, Functional, and Verifiable
by Test. Each requirement is classified by origin, work done, and its use. These cate-
gories are used throughout the design process in tracking the needs and validity of
any of the requirements and in creating traceability links.

125

Assess Available Information

Initial Text Developed
Requirement Information
by origin traceto
I I

Derived
Requirement

Reference

A Original
Requirement

I Implied
Requirement

Requirement

point to trace to

traceto

’_A by work to be done
| |

|
Not Verifiable| | [Compound| | [Redundant| | [Inconsistent]|

| veifisble | [TBD/TBR| | Poorly.

| Telst | |An<|e\lysis| |Sur\|/ey| |Inspéction|

by use
I I I | |
Interface Functional Temporal Non-temporal Design
Reguirement | | Requirement Performance Performance Requirement
Requirement Requirement

Figure5-2. Classification of Text Reguirements

5.2.1 Classification by Origin

126

Every requirement must start somewhere. This classification tracks where that
somewhereis.

The majority of Initial Text Requirements are classified as Original
Requirements. These are, quite simply, those requirements which were expressed
directly in the text documents given to the systems engineering team and often
appearing in contracts. Original Requirements are frequently expressed in sen-

Assess Available Information

tences such as, “The system shall obtain a speed of at least 100 kph.” Some of these
requirements do not define the system, but rather point to reference requirements,
another category.

The other category of Original Requirementsisthat of Reference Requirements.
These are entire sets of other requirements such as any of the SO standards. An orig-
inal requirement might state that the rollover protection system, ROPS, must meet
NEMA 123-456, which is astandard for ROPS established and maintained by
NEMA.

The Original Requirements are closely related to another category: Derived
Requirements. Asthe original requirements are studied and as modeling proceeds,
additional requirements are found. These are the Derived Requirements and they trace
to the Original Requirements from which they were derived. Derived Requirements
may be derived from other Derived Requirements. They are part of the Devel oped
Information.

Another category of requirements is Implied Requirements. These have no pre-
cursor in any documentation. They represent omissions in the imperfect initial infor-
mation. When they are identified and created by engineers, they become part of the
Developed Information. They occur less frequently than other types of requirements.

5.2.2 Classification by the Work Needed to be Done

When requirements areinitially identified and examined, they often have one or more
defects which must be corrected. The defects are identified and corrected by the engi-
neers before proceeding to other stepsin the core process.

The first determination that needs to be made is whether the requirement is ver-
ifiable or not. For arequirement to be verifiable there must exist some measure that
can be used to determine if the system as designed or produced satisfies the require-
ment. There are both quantitative and qualitative measures which can be used.

Those requirements which are verifiable requirements are further broken down
by the approach that will be used to verify them. The four sub-classes are:

o« Test,

e Anaysis,

* Survey, and
* |Inspection

Test and analysis lead directly to quantitative results. Survey isused in the
extremely important situation of establishing user preferences. This may be done
through surveys with questions. It is done more effectively by obtaining responses
from userswho try out product prototypes. General Electric maintains alarge facility
at its Louisville appliance park where appliance users come and utilize new versions.

127

Assess Available Information

128

Thelr reactions are analyzed statistically. Inspection is used for validation when an
examination of the product will show that areguirement has been met. For example, a
requirement for the color of something can be verified by inspection.

Regardless of which meansisto be used, once arequirement is determined to be
verifiable, the verification procedure must be designed and entered into the acceptance
test suite. System level models which capture executabl e excitation and response of
the system provide a direct link between the specification development and the accep-
tance test suite.

If arequirement isfound to be Not Verifiable then there iswork to be done. It is
likely that system analysis with the core technical process will be necessary to formal-
ize what was meant by the requirement and to recast it in a verifiable form. An exam-
ple of thissituation is provided in the last part of this book which is a coherent
example of the modeling process.

Compound requirements state two conditions which must be met within one
statement such asin “The wheels shall be round and made of rubber.” Here two
reguirements exist. In this case it should be split into two separate, traceable require-
ments. These two new derived requirements will, of course have to trace back to the
original compound requirement in order to be able to demonstrate to the customer that
al the expressed requirements were met.

Redundant requirements are a hard category to find. It is fortunate that they are
relatively benign. They increase the tracking load and, if they are numerous enough,
can make the system appear more complex than it really is. When redundant require-
ments are detected, they can be merged after careful consideration that they truly are
redundant.

Inconsistent requirements are quite commonly found in system specifications for
large projects. The specs are built by teams each responsible for some end functional -
ity, and these functionalities may have conflicting objectives which need to be sorted
out during system design. It isimportant to detect conflicting requirements as soon as
possible to avoid making incompatible design decisions for parts of the system. Every
bit of delay increases the cost of correcting the requirement.

Often the original specification documents will include TBD and TBR in places
where the requirements are known to be incomplete. TBD and TBR flag To-Be-
Defined and To-Be-Resolved issues. These requirements must be scheduled for reso-
lution and tracked closely because there eventual definition can have profound impact
on the system design.

Poorly Written isthe last sub-classin the work to be done classification. Ambig-
uous and other hard to understand requirements fall into this grouping. They must be
rewritten.

Assess Available Information

5.2.3 Classification by Their Use

Text Requirements are classified by use so that they can be traced or budgeted prop-
erly to appropriate modeling entities, i.e. functions or components. This classification
hel ps the project to monitor compl eteness and correctness of the modeling by provid-
ing answersto questions like: have all performance budgets been made to compo-
nents? The kinds of requirements by use are:

Functional Requirements which state what the system must do. They traceto
the functions which will accomplish them. In the model s these functions are
encapsulated in objects and appear in the executable behaviors. They do not
state how the system will be built, only on what it shall do.

Temporal Performance requirements which give values for the amount of time
thereisfor the system to respond to stimulus. These time values are budgeted
to the functions that carry out the response.

Non-temporal Performance requirements which give values for properties of
the system like cost, weight, size, power consumption, availability, security,
etc. These quantities are budgeted to the components which make up the sys-
tem. The components are objects and must have attributes that match these
quantities. It isthe components and sometimes the structure of the assembly of
components that have properties like cost, weight, moment of inertia, mean
time between failure, etc.

Interface requirements which specify input/output, limits of flow, and timing
at the interfaces between components. The behavior of the components at the
interface must be adjusted to meet the Interface Requirement. These require-
ments are increasingly important because equipment from many manufactur-
ers and sited all over the world must interact and intercommunicate. Industry
standardsin interfaces are critical. At the time of writing this book, the lack of
accepted interface standards for wide-band coax modemsiis, along with cost
and software issues, a limiting factor in introducing two way communication
in the cable systems wired to 60% of US homes, (Perry 1996). In large com-
plex systems thousands to tens of thousands of interfaces exist and must be
consistent for the system to work.

In the real world, the specification documents which one receives frequently
contain Design Requirements which predetermine a design choice. For each of
theseit isimportant to raise an I ssue (which traces to the Design Reguirement)
with the customer of whether this requirement is meant to apply, or whether it
is amisstatement of arequirement in the form of design. The Issuetracesto a
Resolution. The Design Requirement becomes either an Adjudicated Con-
straint which will be followed, one of the other kinds of requirements, or itis
eliminated.

129

Assess Available Information

130

The classification information in Figure 5-1., Associations of Available Informa-
tion and Figure 5-2., Classification of Text Requirements, can be combined. The infor-
mation above describing Design Requirements tracing to I ssues tracing to Resolution,
and then to Adjudicated Constraints or other kinds of requirements can be added in.
Since the engineering work also develops models based on any Initial Models
received, a Developed Model object can also be added. This results in the complex
information model of Figure 5-3., Information Model for Requirements.

Assess Available Information

Available
Information

A

I

Initial
Information

¥

Developed
Information

Initial Text
Requirement

Heritage
Information

Initial
Model

Concept

Initial Text
Operations

User
Information

narrate

trace to

extend

0

A by origin

traceto

Reference
Requirement

traceto

point to

Original
Requirement

trace to

Implied
Requirement

Requirement

Adjudicated
Constraint

traceto

traceto

traceto

’_A by work to be done

Resolution

Not Verifiable| | [Compound| | |Redundant| | |Inconsistent| traceto
|Verifiale| | TBD/TBR] Poorly
. Written
Issue
trace to|
| 1 | |
| Test | [Analysis| [Survey] [Inspection]
/ by use
| [[| |
Interface Functional Temporal Non-tempora | | pesign
Requirement | | Requirement | |Performance Performance Requirement
Requirement Requirement

Figure5-3. Information Model for Requirements

An association which emerges from this modeling is that the Developed Infor-
mation consists of Derived Requirements, Implied Requirements, Adjudicated
Constraints, and Developed Models. All of the types of requirements and the

131

Assess Available Information

5.3

Adjudicated Constraints trace to elements in the Developed Model which extends the
Initial Model received with text.

Figure 5-3., Information Model for Requirementsis complex and is more readily
understood from partitionslike Figure 5-1., Associations of Available Information and
Figure 5-2., Classification of Text Requirements. However, it summarizes five pages
of written text and is more rigorous than the text.

In aform such as Figure 5-3., Information Model for Requirements, ateam of
engineers can walk through the associations one by one to verify that they make sense.
In this form the information is unambiguous, executable and can be used as the basis
for generating a database schema that will represent all of these information associa-
tions. When complex information models like Figure 5-3., Information Model for
Requirements, are created, they can fail to properly capture reality and can need modi-
fication. They are however, unambiguous and can be checked by engineers and with
tools to find and remove such failures. Information models can be used to create a
database schema for information storage.

A Behavior for Assess Available Information

Aswe have seen, when ateam devel oping alarge complex system receives thousands
of pages of Available Information in the form of text requirements, thereisalarge
amount of work to be done to assess the information.

» ldentify and correct the problems in the requirements

» Classify the kinds of requirements so that they can be properly budgeted and
traced and engineering progress tracked

» Create needed traceability links

Fortunately tools exist, some with hypertext automation, to speed this process. A data
base with information about tools is devel oped and maintained on the World Wide
Web by the International Council on Systems Engineering, (INCOSE 1996).

The process for assessing available information can be described as a behavior
with amodel.

5.3.1 Decomposition of the Behavior of Core Step 1

132

Figure 5-4., Functional Flow Block Diagram Decomposition of Core Sep 1 providesa
Functional Flow Block Diagram view which decomposes the behavior of Core Step
1., Assess|nitial Information. An FFBD isused here, without showing input/output, to
simplify acomplex diagram.

Assess Available Information

1.
Assess
Available [
Information
1.1 15 16 111
Gather ID Traceto
—P Heritage ™ Requirement [P Source lal 1D
Informgtglon Changes Documents Requirements
1.2
17 112
Gather || "
safi - T - e
Information Reaui Problems
equirements & Define
»(And A@ ,@@ o
13 18
Gather Text || "
Rl A
%@ Information Requirements 1.13
Trace
14 | Requirements [
P Gather Ops |— Ing | 1_10at to Source
Concept ncorporate | |
Informetion P> Reference P Requirements
Requirements of Reference
1.14
Plan
—P Issue [
Resolution
'|£L 15k 1.19 1.20 1.23
| rac — Generate Review -
Issue Requirements [P Requirements Correct |
Resolution Database Database Reguirements
Format
) >
1.16
Resolve | | 121 122 1.04
| Requirements Generate | [Review Correct
Issues Ops Concept O&Con_cept Requirements [\ And
enarios enarios Database
1.17
| Ciassfy ||
by
Use
1.18
. Define [
Requirement
Vdidation 1.25 1.26 1.27
Gather Correct
B Initial —PMﬁé‘g'yz‘?th* Modeling
Models Swi Database
core process

Figure5-4. Functional Flow Block Diagram Decomposition of Core Step 1

133

Assess Available Information

134

The FFBD of Figure 5-4., Functional Flow Block Diagram Decomposition of
Core Sep 1, containstwo major parale parts. The upper part, functions 1.1 - 1.13,
describes what is done in correcting, classifying, and tracing text requirements. There
are six major sequential groupings of tasksin this upper path.

1. Collect the existing information

2. Combineall collateral information, including change documents which may be
received during the collection period.

Classify problems, define issues, and trace to origin

Resolve issues

a > »

Generate and review reguirements database and operations concept.
6. Correct any problems in the requirements database.

Thefirst job to be done is to gather information. If thisisthe start of a program, then
one gathers the heritage, user, text requirements, and operations concept information.
If thisis part way through the program, one gathers the prior context and component
models.

The next job isto incorporate the user and heritage information with the text
requirements and to identify any reference requirements. The requirements from the
reference sources must be obtained and merged with the other requirements informa-
tion.

If requirement changes are received, they areidentified and traced to source doc-
uments to establish what is affected by the changes.

With the raw requirements in hand, the next job isto identify what are require-
ments and to separate explanatory statements and boiler plate from the requirements.
As identified requirements emerge, they are classified by source and by work to be
done; and issues are developed. It is convenient at thistime to ensure that all require-
ments trace to their source. In the later stages of the development the context and
object models are reviewed and issues raised regarding the models.

The next job isto plan issue resolution, track that work, resolve the issues, clas-
sify requirements by use (now that issues are resolved), and define the means of vali-
dation.

Asthiswork is done, a database of paper or an electronic database of informa-
tion is developed. The job now is to generate a complete and consistent database and
to review it. Thisisthen followed by correcting any requirements format problems
that were found in review and correcting the database information.

If oneis dealing with models at this part of the program life cycle, then there will
be available both context information and operations concept information in the form
of initial models. The lower part of the FFBD of Figure 5-4., Functional Flow Block

Assess Available Information

Diagram Decomposition of Core Sep 1 describes the steps in assessing the initial
models. First the models are collected. Next they are analyzed with the core technical
process.

If these are executable model s they can fully define the system context. They
will represent the excitations of the system and the system responses. These scenarios
provide the stimuli that drive the components responses. It isimportant that they are
complete and that they are correlated with the validation suite which is devel oped.
Capturing them as behaviorsin executable modelsis a potent way to specify what the
system or component must do. The scenarios must be reviewed and the database for
modeling scenarios corrected.

The sets of scenarios developed in thisfirst Core Step are vital asinputsto the
succeeding core engineering steps which model what the system does internally.

When the available information has been assessed then core step 1 is complete
for thisiteration. The next step in the Core Process are ready to be undertaken. The
next three steps are interdependent and they are carried out concurrently.

54 Summary

In the development of large complex systemsthereis substantial effort and engineer-
ing cost expended in assessing the large requirements documents that are made avail-
able. These efforts and costs can be reduced substantially with modeling. When a
modeling approach is applied, the information is substantially condensed. A page of
modeling is equivalent to five to ten pages of text. Further, the models can be checked
for correctness by engineers and tools, and they can be transformed rigorously into
the notations and views needed by particular engineering disciplines. When models
are used fully, text descriptions are not lost. Instead they are created as data dictionary
items whenever amodeling element is created. This provides for traceability without
having to create traceability for large volumes of text. The links exist within the mod-
es.

In practiceit is not amatter of choice of the engineering organization whether to
use text documents only, models only, or text documents with some models. In most
real situations the manner in which requirements are handled is established by the
acquisition process defined by the acquiring organization or by management. The
engineering professionals need to respond efficiently and proactively to any of the sit-
uations.

55 Exercises

1. Theavailable information is taken from a problem statement that was written for
software engineering development and is intermediate between a requirements
statement and an operations concept. The available information is for an Auto-
mated Teller Machine System:

135

Assess Available Information

“Design the software [an automated teller machine system)] to support a comput-
erized banking network including both human cashiers and automated teller machines
(ATM’s) to be shared by a consortium of banks. Each bank providesits own computer
to maintain its own accounts and processes transactions against them. Cashier stations
are owned by the individual banks and communicate directly with their own bank’s
computers. Human cashiers enter account and transaction data. Automatic teller
machines communicate with a central computer which clears transactions with the
appropriate banks. An automatic teller machine accepts a cash card, interacts with the
user, communicates with the central system to carry out the transaction, dispenses
cash, and prints receipts. The system requires appropriate record keeping and security
systems. The system must handle concurrent access to the same account correctly. The
banks will provide their own software for their own computers; you are to design [the
ATM system)] the software for the ATM’s and the network. The cost of the shared sys-
tem will be apportioned to the banks according to the number of bank customers with
acash card.”

a. Break the paragraph into individual sentences and classify them by the work to
be done.

Correct the identified problems for each sentence.
Identify any derived requirements or implied requirements that result from b.
Attach to each statement that results from c. how it shall be validated.

Classify each statement according to its use.

-~ 0o 2 0 o

Adjudicate any design requirements as reasonable or needing transformation to
one of the other types. Correct any which need transformation.

2. Givethree examples of:
a. Original Requirements
b. Reference Reguirements
c. Implied Requirements
d. Derived Requirements

3. Provide atext description of the relationship of Design Requirements to Implied
Requirements (see Figure 5-3., Information Model for Requirements on page 131).

Develop a narrative requirements statement for a design of afolding table.

Apply the process of Figure 5-4., Functional Flow Block Diagram Decomposition
of Core Sep 1 on page 133 to the answer for question 2.

136

Assess Available Information

5.6 References

Perry, Tekla S. 1996. The trials and travails of interactive TV. IEEE Spectrum April,
22-28

INCOSE 1996 International Council on Systems Engineering Web Site, http://
usw.interact.net/INCOSE/workgrps/tool s/tooltax.html

137

Assess Available Information

138

Define Effectiveness Measures

6

Define Effectiveness Measures

6.1 What Core Step 2 Is

Core step 2 establishes the criteria, the effectiveness measures, by which alternative
designs and architectures will be judged. It provides the guidance of what is most
important to the devel opers of structure and behavior models. For criteriathat are
matters of preference, it establishes the stakeholder groups and surveys that identify
and establish a set of effectiveness measures. For criteriathat can be expressed as
statements of engineering performance, it generates the equations that definethemin
engineering terms. It sets up the surveysthat are required to prioritize all of the effec-
tiveness measures.

The numerical evaluation of the effectiveness measures is not done in this step,
it isapart of the later Core Step 5, Trade-off which is discussed in “Perform Trade-
Off Analysis’ beginning on page 203.

Effectiveness measures are a basic abstraction used by management to analyze
business and formulate business strategy. The are examined in “ Interface with Acqui-
sition and Management” beginning on page 307.

6.2 Importance of Effectiveness Measures

Effectiveness Measures are the small subset of the requirements that are so important
that the system will fail if they are not met and will be a hugh successif they are met.
They are the important things the product will do. They incorporate the visionary
goals of management and engineering which may exceed what users and operators
expect and presently can appreciate. They are the criteria used to make the trade-off
decisions of what to build. They drive the system solution. The design of asystem is
anill posed problem that has no solution without a set of criteria to guide choices.
The effectiveness measures correspond to the regularization functions used in optimal
control or in calculus of variations. They are few in number, usually lessthan a
dozen, even for large complex systems.

139

Define Effectiveness Measures

140

The effectiveness measures are critically important because they incorporate
what customers, owners, operators, and users want and will use in their decisionsto
buy or not buy product. They define thefit of the product to the marketplace. They are
critical because al the stakeholders - users, customers, owners, operators, engineers,
and management, must agree on them or there will be future problems.

If these criteria are not both correct and agreed to, then the system development
can be plagued with costly requirements changes. It may miss its market. The effec-
tiveness measure results are extremely useful in reviews with management and with
customers, users and operators who do not want to know all of the technical engineer-
ing detail but do want to know about these critical system criteria.

Figure 6-1., Context for Systems Engineering, shows an object structure model
that captures the context for systems engineering, considered as an organization. Only
the design engineering disciplines, suppliers, and manufacturing engineering disci-
plines need and want to receive the engineering detail. The detail they need to receive
isaversion of the system detail transformed into the views and notations of the disci-
pline. The product stakehol ders and management need information about the system,
especialy effectiveness measures, in aform that is useful to them. The product stake-
holders do not need all of the technical data.

Product Stakeholders -
users, operators, buyers,
owners, customers

Marketing Purchasing
Systems]
Sdes |— Engineering [| Suppliers
Management Manufacturing
Engineering

Design Engineering Disciplines -
Hardware, Software, Operator,...

Figure 6-1. Context for Systems Engineering

Define Effectiveness Measures

The use of effectiveness measures as decision criteriafor trade-off gives the
core technical process for engineering complex systems its distinctive behavior.

Trade-off in software engineering is known as optimization and complexity. The
heart of trade-off in software engineering is complexity or space for speed. An O(n)
algorithm executing n operations may run in O(n*2) time, while aless complex algo-
rithm to perform exactly the same function may run in O(nlogn) time. Similarly, soft-
ware can be adjusted to store more intermediate calculations and run faster, or to use
less storage space and run slower. Speed can be traded against the size of the data
storage. These optimizations can and often are performed after code isinitialy run-
ning. Thisis the integration phase of software development.

Systems engineering employs effectiveness measures and trade-off in a distinct
and formalized manner which is different than the practice in software engineering.
This difference must be taken into consideration when attempting to apply software
engineering methodol ogies to systems problems.

6.3 An Industrial Example

When effectiveness measures are first posed they are often phrased in customer and
user terms rather than in engineering equations and quantities. They must become
measurable and transformed into engineering quantities, or they must be posed with
alternatives.

Aninteresting illustration is the devel opment of the Boeing 777, (Norris 1995).
At the conclusion of the negotiations with United Airlines which placed the launch
order for the 777, a hand written note stated:

“In order to launch on-time a truly great airplane, we have the
responsihility to work together to design, produce, and introduce an
airplane that exceeds the expectations of flight crews, cabin crews,
and maintenance and support teams and ultimately our passengers
and shippers. From day one:

*Best dispatch reliability in history
*Greatest customer appeal in theindustry
*User friendly and everything works.”

The Boeing engineering team included engineers from the airlines from day one. The
bulleted measures above had to be transformed into two kinds of measurable goals:

* measurable engineering goals

» preference goals from surveys of customer

141

Define Effectiveness Measures

6.4

142

Reliability isa clear engineering goal and can be quantified. Engineering goals
derived from “ greatest customer appeal in industry” would likely include flight range,
passenger comfort, and aircraft availability. They can be quantified by interacting with
the customers and attaining agreement on the numerical values critical to success.

“User friendly to flight crews, cabin crew, passengers, etc.” can also be quanti-
fied, but only by careful survey of the wants and preferences of these groups of peo-
ple. This can be done with real attainable feature alternatives, access to representative
groups, and valid statistical analysis of the results. The findings can then be trandlated
into engineering alternatives and goals.

As the engineering solution emerges, the results can be explained in terms of
what will be achieved in dispatch reliability, customer appeal, user friendliness, and
reliability of all parts of the aircraft. Thisis the information needed and understood by
most of the stakeholders.

How Effectiveness Measures Drive the Solution

How the effectiveness measures drive the solution is shown with a simple example.
Thethree functions of Figure 6-2., Behavior of Three Independently Concurrent Func-
tions provide the basis for the example.

o

Function A.

2.
6@ Function B.

{ N

Y ;

Function C.

G-t

Figure 6-2. Behavior of Three Independently Concurrent Functions

SR A

Functions A, B, and C are completely independent and have separate and distinct
inputs and outputs. They can be rearranged in any of the possible series parallel com-
binations without affecting the outcome - O1, 02, and O3. If they aredonein a
seguence, or two in a sequence with one parallel, the same outputs are produced. A
simple practical example of three such functionsis: setting a dinner table, cooking the
dinner, talking with a guest.

Define Effectiveness Measures

For thistrivial example we assume that there are estimates of how long it takes
to perform each of these tasks, as shownin Figure 6-3., Timeline. Task A takes 1 time
unit, task 2 takes 2 units and task 3 takes 4 units.

Task A

Task B

Task C

time

Figure 6-3. Timeline

We assume that we have only one kind of resource, Object R, with afixed cost
per unit that can do al three of these functions. We can use several of them in the
solution.

6.4.1 Problem: System 1
» The effectiveness measureis least cost for System 1.

* What isthe near optimal solution?

» Answer: One object with the three functions serialized shown in Figure 6-4.,
System 1 built from Object R

143

Define Effectiveness Measures

Low Cost, System 1
Cost $100
Time 7 units

Function A
Function B
Function C

o

Object R

Cost $100
Time 7 units

Function A
Function B
Function C

Figure 6-4. System 1 built from Object R

There are six equivalent behaviors to do this as shown in Figure 6-5., Sx near
Optimal Behaviors.

1. 2. 3.
P>Eunction A| ™ |Function B P> Functionc| ™
1. 3. 2.
> Function A > Function C > Function B >
2. 1. 3.
> Function B > Function A > Function C >
2. 3. 1.
> Function B > Function C > Function A >
3. 1. 2.
> Function C > Function A > Function B >
3. 2. 1.
> Function C > Function B > Function A >

Figure 6-5. Six near Optimal Behaviors

144

Define Effectiveness Measures

6.4.2 Problem: System 2

The effectiveness measure is |least time to complete for System 2.
Wheat is the near optimal solution?
Answer: There are two solutions:

» System 2.1 Three objects, each performing one function
» System 2.2 Two objects, one performing functions A and B, one perform-
ing function C.

System 2.1 is shown in Figure 6-6., System 2.1 built from Three Object R's

Short Time, System 2.1

Cost $300

Time 4 units

Function A

Function B

FunctionC
Object R, role A Object R, role B Object R, roleC
Cost $100 Cost $100 Cost $100
Time 1 unit Time 2 units Time 4 units
Function A Function B Function C

Figure6-6. System 2.1 built from Three Object R’s

The behavior of System 2.1 isthe concurrent behavior shown in Figure 6-2.,

Behavior of Three Independently Concurrent Functions on page 142, which can use 3
resources or objects to perform it. Three instances of object R are used in three differ-
ent roles. Note al so that the behavior does not demand any interfaces among the three
objects used. Interfaces might be necessary for other reasons, but not because of the
behavior. The non-temporal attribute of cost adds going up the aggregation tree. Time
does not add. The time line is the result of the behavior and is obtained by executing
the corporate behavior of System 2.1.

The alternative solution, System 2.2, is a solution to this problem and to a more

restricted one below.

145

Define Effectiveness Measures

6.4.3 Problem: System 3
* The effectiveness measures are

* least timeto complete for System 3.
» lowest cost for System 3.
* What isthe near optimal solution?

e Answer: There are two solutions;

» System 3.: Two objects R, one performing functions A and B serialized, the
other performing function C. Because there are two ways to serialize Func-
tions A and B, there are two solutions.

Figure Figure 6-7., System 3 Built from Two Object R's. shows Object R used in

two roles
Short Time, System 3
Cost $200
Time 4 units
Function A
Function B
Function C
Object R, role AB Object R, roleC
Cost $100 Cost $100
Time 3 units Time 4 units
Function A Function C
Function B
Figure6-7. System 3 Built from Two Object R’s

The overall completion timefor System 3. isthe same asfor System 2., as shown
by executing the behavior of Figure 6-8., Behavior of System 3. It isless than System
1. The optimal structure found for System 3 isidentical to the solution found for Sys-
tem 2.2.

146

Define Effectiveness Measures

®/V

Figure 6-8. Behavior of System 3

S @

@

A
1. 2.
—|Function A—®{ Function B.
NA@ 6nd>->
3.
—|Function C.

-~

The cost of System 3. is two-thirds of System 2.1 and twice as great as System

1. The results of the example are summarized in Table 2., System Alternatives &

Effectiveness.
Sysem . Effectiveness
Alternatives Time Cost M easures
System 1 7 units $100 cost
System 2.1 4 units $300 time only
System 3 4 units $200 time & cost

Table 2: System Alternatives & Effectiveness

The effectiveness measures drive the solution that is adopted. They guide and

reduce the work of modeling behavior and structure by informing the engineers

which alternativesto explore. The alternatives exist because behavior can be mapped

to the parts in different ways taking advantage of independent concurrency in the

behavior of the system. Numerical evaluation of the effectiveness measures requires

knowledge of both the behavior and structure of alternative system designs. It

requires knowledge of the attributes of the parts of the structure. It requires access to

stakeholder groups who can express their preferences among alternatives.

In even thistrivial problem, effectiveness, behavior, and structure were all con-

sidered. The development of these three modelsis a set of concurrent dependent

activities.

147

Define Effectiveness Measures

The effectiveness measures not only drive the solution to the problem, but also
guide the management of the team performing the work. They become a guiding prin-
ciplefor prioritizing the focus of the work, for allocating manpower to the tasks, and
for assessing risk (Reugg, Field, and Boldblatt 1993).

6.5 Types of Effectiveness Measures

It is useful to classify effectiveness measures based on the kind of work that must be
done to evaluate them.

Effectiveness
Measures
‘ kinds of
Attribute Modeling Preference
Effectiveness Effectiveness Effectiveness
Measures Measures Measures
Figure6-9. Classification of Effectiveness M easures

Figure 6-9., Classification of Effectiveness Measures depicts three kinds of
effectiveness measures:

» Thosethat can be calculated with equations from the attributes of the parts of
the system and the structure of the system - attributes like weight, cost, power,
or reliability

» Thosethat can be calculated from modeling and analysis - modeling of behav-
ior, simulation of probability of detection, etc.

» Thosethat can be obtained from survey of the preferences of owners, operators,
and users using their choices among solution alternatives.

6.6 Priorities among Effectiveness Measures

Complex systems are similar to the trivial example above in being driven by only a
few effectiveness measures. However, complex systems involve thousands or more
parts. The relationships between the effectiveness measures and the attributes of indi-
vidual parts span several tiers of decomposition of the system and many linear and
non-linear relationships. Both the budgeting of attribute values to parts and the roll-up
of attribute values to effectiveness measures needs the precision and efficiency of
computer capture and execution with models.

148

Define Effectiveness Measures

A list of individual effectiveness measures as criteria does not completely estab-
lish the solution to choose. Compare Systems 1. and 2.1 in Table 2. Isthe gain of
reduced time from 7 units to 4 units worth the added weight of two Object R's and
added cost of $50.00? This can be decided in severa ways:

» By examining atable such as Table 2 and choosing.

* When the trades are continuous functions rather than a coarse set of choices, it
can be done by finding minimain the functions and then choosing among
them.

» By prioritizing the effectiveness measures into a single cost function by
assigning priorities or weights for each measure. The solution with the lowest
value of cost function isthen the system of choice.

Statistically valid systematic methods of assigning such priorities have been devel-
oped. The advantage of the single cost function is that it provides a single number on
which to base the selection of the design to be used. The advantage of examining the
set of individual effectiveness measures and how they vary with alternatives is that
one can see where the sharp maxima and minima occur and where the broader max-
ima and minima occur. It is sometimes prudent to select a somewhat less optimal
design if the tolerances on the attributes of the parts can be larger. This selectionisa
selection based on quality/risk and should be quantified with a proper requirement or
effectiveness measure.

The selection of the effectiveness measures from among all the possible perfor-
mance requirements, and the selection of the weighting factors both require setting
priorities by ng the opinions of informed individuals. The individuals partici-
pating need to represent all important product stakeholder groups. The nature of the
statistical methods used (Thomas 1983) make it equally easy for individuals of
diverse backgrounds and education to participate.

Two methods recommended for setting priorities for complex systems are the
Analytic Hierarchy Process, AHP, (Saaty 1983), and the M ulti-attribute Utility The-
ory, MAU, (Roy and Vincke 1981).

In the AHP process individuals consider the relative importance of the effec-
tiveness measures in pairs, two at atime, until they have exhausted al the pairs. A
scale for assigning importance is provided by the method. These results are summa-
rized in amatrix and the principal eigenvector of the matrix provides the values for
the priorities. If al of the effectiveness measures can be computed anaytically, then
these priorities are used directly as weighting factors for the regularization function
that will establish the near optimal design.

149

Define Effectiveness Measures

6.7

150

Some of the effectiveness measures may be of the type that are matters of user
preference. In this case the designs are considered in pairs for each of the effectiveness
measures by the individual s participating. These results are combined with the weight-
ing factorsto yield apreference for each design. The method provides a check for con-
sistency and significance of the results.

The AHP and MAU methods provide arationa basis for the selection of a par-
ticular design candidate.

Information Model for Core Step 2.

The nature and use of effectiveness measures has been discussed above and illustrated
with a simple example. It is useful to provide more rigorous models of the work done
in creating effectiveness measures and of the information used. Figure 6-10., Informa-
tion Model for Create Effectiveness Measures captures associations among the infor-
mation objects. The reasons for the associations in this model are that they are used in
the work that isdone. A discussion of the information model proceeds from a descrip-
tion of the work steps to be done. The work steps are shown in Figure 6-11., FFBD
View of Define Effectiveness Measures, Core Sep 2. These figures are discussed
together because of their intimate association.

Define Effectiveness Measures

l generate

Effectiveness
Measure
Survey
generate
Effectiveness Effectiveness Effectiveness
Measure Measure Measure
from from from
Modeling Preferences Attributes
Priority
Survey

compute

Effectiveness

Eff ’[compute
_ ectiveness ;
Priorities |-r2kedby Measure with
establish determine
alternatives
Cost selects Subject
Function System
Design
compute Attributes
executes .

Exe(_:ution behavior guyggnc;[
Engine Behavior

describe
structure

Structure
operations

Object
Interfaces

Figure6-10. Information Model for Create Effectiveness M easures

1+ Measure

Equations

are arguments
of equations

Attributes

have

Values

provides

| Value Computation|

o]

Estimation

151

Define Effectiveness Measures

152

2
Define
Effectiveness
Measures
25
2.1 Define 2.6
Accent Effectiveness Evaluate
— Initta. [Measures || Effectiveness
Information from Measure
Attributes Equations
2.2
| Accept || 78
Behavior 2.7 '
Model Perform Ef?e%g?/rgt];s 211
i Perform
'(A@ ﬂ@@_ Htoasre T Measures _6@_’ Priority [
2.3 Survey from Survey
— AcceBt L Preferences
Sssdre
29
24 Define 2.10
[dentify Effectiveness Execute
| Stakeholder | Measures [P ggg%t
Participants from y
Modeling Behavior
Figure6-11. FFBD View of Define Effectiveness Measures, Core Step

All of the Effectiveness Measure identification is done in conjunction with the
major stakeholders: owners, operators, users, management, marketing, customers, etc.
Thefirst set of four steps, Figure 6-11., FFBD View of Define Effectiveness Measures,
Core Sep 2, accept al currently available information and identify the stakeholders
who will participate with the engineering team. Sometimes marketing represents
groups of these people. There follows three concurrent paths.

In the top path the team defines the effectiveness measures that are related to the
attributes of the parts and to structure, like cost, weight, and reliability. Equations are
associated with the attributes and have these attributes as their arguments. The associ-
ations are shown on the right side of Figure 6-11., FFBD View of Define Effectiveness
Measures, Core Sep 2. The attributes must be captured in the Structure Model, Core
Step 4.

In the middle path the team defines and performs the surveys that generate effec-
tiveness measures related to preferences. An example would be a survey to establish
the seat environment for passengers that would make an aircraft the most appealing in
airline use. The associations are shown in the top center of Figure 6-11., FFBD View
of Define Effectiveness Measures, Core Sep 2.

Define Effectiveness Measures

Figure 6-11., FFBD View of Define Effectiveness Measures, Core Sep 2 the
team defines effectiveness measures based on modeling associated with execution of
behavior. Thisimpliesthat there iswork in progressto define Behavior, Core Step 3.
This path is particularly important when the overall success of the behavior is not
known but behavior is understood and probabilities are known or estimated for the
steps in the behavior. Examples are probability of successin detecting aflaw, in
detecting amilitary threat, in destroying atarget, in completing acommunication, etc.
These problems often involve communication bandwidths and frequency and size of
communications. They yield to simulation and monte carlo calculations for which
behavior must be known. The left side of the figure shows the associations of an exe-
cution engine (a computer tool or person) with the Subject system and the effective-
Ness measures.

Thelast stepin Figure 6-11., FFBD View of Define Effectiveness Measures,
Core Sep 2 isto perform the priority survey that establishes priorities for a cost func-
tions. The center part of the figure shows that the effectiveness measures determine
the alternative subject system designsto be considered. It showsthat the effectiveness
measures have priorities which are generated by the priority survey. The priorities
establish the cost function that selects among the aternative designs.

The effectiveness measures have a determinative influence on the behavior and
structure developments that establish aternative architectures. They provide the
insight to the engineersto efficiently develop a modest number of likely aternatives
from among the multitude of possible alternatives.

6.8 Summary

The work is donejointly with the stakeholders. It establishes the effectiveness mea-
sures and the equations and surveys to evaluate them. The attributes identified must
be included in the structure model. The defined effectiveness measures guide the
structure and behavior modeling in defining a modest number of important alterna-
tive solutions for the system. This core step provides the mechanism for getting effec-
tiveness measure values from stakeholder preferences, structure and behavior. It
provides the mechanism for generating priorities for the effectiveness measures and a
cost function that picks out the near optimal solution.

The use of trade-off and effectiveness measure criteriawhich are derived from
the product stakeholders is a distinguishing best practice in the engineering of com-
plex systems. The complexity is handled by the use of powerful abstractionsin com-
puter modeling of behavior and structure. Defining product with high value,
competitive performance, low cost, and good fit to the market is a result of trade-off
with effectiveness measure criteria.

153

Define Effectiveness Measures

6.9 Exercises

1. Repeat the analysis of the problem described in Section 6.4, How Effectiveness
Measures Drive the Solution on page 142. Use the same three concurrent functions,
Figure 6-2., Behavior of Three Independently Concurrent Functions on page 142
and the same time line, Figure 6-3., Timeline on page 143. Consider the same com-
binations of effectiveness measures.

a. Find the alternative designs possible when two resources are available as
shown in Figure 6-12., Two Resources.

Resources
Object H Object L
Cost $100 Cost $150
Speed 1.0x Speed 1.5x
Function A Function A
Function B Function B
Function C Function C
Figure 6-12. Two Resources

b. Extend Table 2., System Alternatives & Effectiveness. to include the additional
aternative designs.

2. ldentify stakeholders for the following.
a. haogen table lamp
b. farm tractors
c. quality assurance consulting

3. Ingenera, inthe U.S., black olives comein cans, spanish (green) olives comein
clear, glass jars. What effectiveness measures might account for this difference?

4. Design aset of effectiveness measures, using the processin Figure 6-11., FFBD
View of Define Effectiveness Measures, Core Sep 2 on page 152 for

a. anintegrated circuit fabrication plant
b. aninternet browser

c. aclock radio

154

Define Effectiveness Measures

d. aprocedure for financial auditing
5. For each of the effectiveness measuresin question 2
a. classify thekind

b. prioritize the measures and state the reason.

6.10 References

Norris, Guy. 1995. Boeing's seventh wonder. | EEE Spectrum. October 20-23.

Reugg, Richard G, Field, Kevin J,, and Boldblatt, Barry. 1993. Design for manufac-
turability/affordability - The F414 story, Defense Manufacturing Conference
1993 San Francisco, CA. Vol 1, 97-109.

Roy, B. and Vincke, P. 1981. Multicriterion analysis. Survey and directions, Euro-
pean Jour. Operat. Res. 8, 207

Saaty, Thomas L. 1983. Priority setting in complex problems, |EEE Trans. on Engr.
Management. EM-30: 140-155.

Thomas L. 1983. Priority setting in complex problems, IEEE Trans. on Engr. Man-
agement. EM-30, 140-155.

155

Define Effectiveness Measures

156

Create Behavior Model

7

Create Behavior Model

7.1 What Core Step 3 Is

Core Step 3 creates the behavior of whatever thing or object the engineer is consider-
ing. If the engineer is defining the context of the system or subsystem, it is necessary
to define the behavior of each external object in the environment that excites the sys-
tem. Asthe excitations are defined, the responses of the system or subsystem need to
be defined. These excitations and responses are behaviors. They capturein rigorous
and executable form the information which is expressed in text operations concepts
or requirement statements. They first define the intrinsic behavior that the system or
subsystem shall have. Thisisthe behavior as allowed by nature, incorporating the
sequences and alternatives demanded by reality and preserving the concurrencies
allowed.

Theintrinsic behavior is often transformed to adesign behavior by serializing
concurrencies or pipe-lining sequences for performance reasons.

The design behavior is the emergent behavior of the interacting assembled com-
ponentsthat constitute the system. It resultsin the same set of responses to excitations
asthe did the intrinsic behavior, but may be faster and less expensive when imple-
mented.

Generally the creation of behavior models occurs concurrently with the defini-
tion of effectiveness measures and with the creation of structure models. The effec-
tiveness measures guide and reduce the work of creating behavior and structure
models by defining what is of greatest value. The structure models provide for effi-
cient choice of the best pieces and partsto use, and they help the engineer keep the
behaviors being created within reasonable reach of the feasible. In this competitive
global market placeit is essential to push the system close to itslimits, but it isaso
vital to stay within feasibility and to do the engineering at low cost.

Behavior models play a particularly important role in the re-engineering of sys-
tems which are poorly documented. In this case it is frequently important to reverse
engineer and synthesize an understandabl e higher level behavior of the system from
the existing lines of code or from the behaviors of amultitude of individua parts. The
existing emergent behavior of the system must often be preserved in the new system

157

Create Behavior Model

7.2

158

with enhancements. Yet the available detailed documentation of behavior may only

describe the behaviors of individua parts or of lines of code or may not match the
actual system.

How to Create Behavior Models

Chapter 3, “Basics of Behavior” beginning on page 67, describes the basics of model-
ing behavior. This chapter draws upon those results to define the detailed steps
involved in creating a behavior model. The detailed steps are described in text, are
made explicit with amodel, and areillustrated with a simple example.

Figure 7-1., FFBD View of Core Sep 3, isa Functional Flow Block Diagram of

an engineer’s behavior in creating a behavior model for the object or thing under con-
sideration.

3
Create
Behavior
Model
31 34
Accept | Define
Effectiveness and Trace
Measures Functions

(3.2 35 37 38
And A ,f _| o 2 .
} Sroetire Q@ Order Vaidate [® Evauae

Model Functions Behavior Functiondl
3.3 3.6
Accept i 3.9
Avaldie — ~ — Define] St —>
Information Input/Output Behavior
Information

Figure7-1. FFBD View of Core Step 3

Thefirst three stepsin the engineer’s behavior, 3.1, 3.2, and 3.3, are concurrent
and in general have no established order. The information already developed about
effectiveness measures is accepted and interpreted in step 3.1. For the modeling of a
particular subcomponent some of the effectiveness measures may be unimportant and
othersimportant and requiring interpretation. For example, in the development of a
satellite, designing to minimum weight is an important effectiveness measure. Yet the
physical weight of a custom high speed integrated circuit chip may be unimportant.
However, the power consumption of the kinds of chips used may be very important to

Create Behavior Model

satellite weight because of the impact on power storage, solar energy arrays and heat
dissipation. Power consumption is likely associated with chip processing speed and
hence the time for completion of a behavior.

Theinformation developed in prior modeling of structureis accepted in Step 3.2
and used in this modeling of behavior.

All of the applicable available information is accepted and used in Step 3.3.
Often thisincludes text requirements and an operations concept which describe what
the particular subcomponent must do. The available information may include behav-
ior models developed earlier that are to be used or refined.

The second set of three concurrent stepsin Figure 7-1., FFBD View of Core Step
3, 3.4, 3.5, and 3.6, build the behavior needed at this stage of the engineering. Step
3.4 defines the functions that are needed and develops traceability links to text
requirements which are applicable. The definition of the functions may suggest
derived requirements associated with them which require traceability links to the
functions and to parent requirements.

It is possible to do the engineering development using models and a data dictio-
nary rather than with text requirements. Presently this approach israrein practice.
When the modeling approach is used, the functionswill be adecomposition of afunc-
tion in a previous behavior model. The text requirements exist as explanationsin the
accompanying data dictionary and are automatically linked to functions and parent
requirements as they are devel oped.

Step 3.5 of Figure 7-1., FFBD View of Core Sep 3, orders the functions. Steps
3.4 and 3.5 are not sequential. Defining the functionswill involve thinking about their
order, and ordering the functions will result in the discovery of new functions needed
or in the modification of ones already selected. These two steps are concurrent. The
result of completion of these two steps is the information needed for a Functional
Flow Block Diagram view of the behavior. The information can be captured by con-
structing this view with a graphic tool or by creating part of a behavior model.

Step 3.6 of the figure defines the Input/Output items for each function. In I/O
intensive or data intensive systems, the I/O information may be more important, rele-
vant, and available to engineers than the ordering of functions. It may be very impor-
tant to the definition of the functions. The I/O - Function view of behavior, a Data
Flow Diagram, may be of greater interest than a Functional Flow Block Diagram.
This step is concurrent with 3.4 and 3.5 and may cause modification of their results.

When all three definition steps have been completed, the result is an executable
behavior. Step 3.7 is the execution of the behavior, manually by engineers or automat-
ically with atool. It validates the behavior. The execution will find problems such as
starvation or deadly embrace. By associating time budgets with each function the
execution will generate an overal time line for the behavior. If this style of modeling

159

Create Behavior Model

7.3

160

has been carried out consistently during the development of the tree of parts that con-
stitute the system, the time line for a subcomponent can be studied for itsimpact on an
overall response thread of the system to an external excitation. In many developments
there is no deterministic time of completion for the functions but probabilities of com-
pletion can be estimated for them. In such acase it is often possible to execute the
behavior as a monte carlo calculation to generate a probability for overall success.
Thisisuseful for detection types of systems like medical imaging, flaw detection,
radar, and sonar systems. It is useful for systems with statistically known excitations
like communi cation systems and management information systems.

Step 3.8 evaluates the functional interfaces. It is particularly useful in situations
in which the magnitude of input/output is known and the rate of generation and con-
sumption is known for functions. In these situations the flow at interfaces can be
established once the behavior has been demonstrated to be error freein step 3.7. Wait
times due to lack of input are established. Accumulation of output is determined and
can be correlated with the amount of storage capacity available or required.

Thefinal step, 3.9, generates all the behavior information needed for the engi-
neering information base in the form required. It isimportant to remember that engi-
neering is an art of finding a near optimal solution with a minimum of effort. If some
of the stepsin Figure 7-1., FFBD View of Core Sep 3 on page 158 can be skippedina
particular problem without negative impact, then that is done.

If itisnecessary to cycle from any later step to any earlier step, then that isdone.
There are too many possible backward loops to show them in the figure. The back-
ward loops were all accounted for in the Perform Change Control process step No. 2,
as shown in Figure 4-5., Model for the System Engineering Process on page 106. This
step provides a compl ete process for the discovery of any issue and its resolution by
any alteration of the progression of work, whether the issue involves the personal
work of only one engineer, or involves the entire engineering team and revision of
contract with a customer. Details for Perform Change Control are described in “Dis-
covery and the Change Control Process” beginning on page 328.

Example of Behavior Development - Bottling Wine

In order to discuss a system behavior, e ements external to the system must first be
developed. These external elements form the context for the system. As suggested
before, the context can be stated in several ways.

» Executable Requirements, captured in models
* Requirements expressed in text
» An Operations Concept described in narrative prose.

In addition, Effectiveness M easures are developed in parallel and guide efficient
development of behavior and structure models.

Create Behavior Model

For the purposes of this example, bottling wine, we will assume the existence of
context information without debating its technical merit or how it came to exist. Fig-
ure 7-2., Context Diagram for Bottling Wne, shows the context using an information
model. Thisisthe structure information which is the input to step 3.2 of Figure 7-1.,
FFBD View of Core Sep 3 on page 158.

Winemaker

Y -
Nalae
Order bottling

Specify source
Specify time

order bottling
& providewine

Storage Wine Bottling Bottling
Facility System Supplies
Accept wine Bottle wine +———e Supply items
bottles stores Get supplies supplies

Get wine

Figure 7-2. Context Diagram for Bottling Wine

Very often alarge complex problem can be broken into weakly interacting parts
by examining the context of the system. It is then useful to have separate teams
develop the weakly interacting parts and to carefully combine the results and make
them coherent. To simplify this example only the interactions between the Wine-
maker and the Wine Bottling System will be considered in this chapter. The other
interactions in the context are suggested as an exercise.

The context can be described with text as a set of requirements.

7.3.1 External System Behavior

Name of the external system(s) causing an excitation of the system
* Winemaker

The excitation behavior
» The Winemaker shall order bottling of a specific number of bottle of wine.
» The Winemaker shall specify the barrels of wine to be used.

* The Winemaker shall specify the time for completion of bottling.

161

Create Behavior Model
TheWinemaker shall make the barrels of wine available

Inputs to the system
» Location and identity of the stored wine from Winemaker

» Location of other necessary supplies from Bottling Supplies
» Time of completion from Winemaker
» Number of bottlesto be filled from Winemaker

o Start bottling command from Winemaker

Functional Requirements of System
» Thesystem shall fill bottles with wine

* The system shall cork bottles of wine
* The system shall label bottles of wine

Outputs from the System
» Bottles of Wine to Storage

* Reguest for Wine Barrels to Winemaker
* Reguest for Supplies to Bottling Supplies

Name of the external system(s) receiving the Outputs from the System
» Bottled Wine Storage

» Bottling Supplies

* Winemaker
7.3.2 Temporal Performance Requirements

Time duration or probabilities associated with the excitation scenario
» The excitation system shall provide a stimulus at uncertain intervals with the
highest demand of 100 bottles per day.

7.3.3 Non-temporal Performance Requirements
* Number of bottlesto be produced

» The system shall produce bottles of wine at arate up to 100 bottles of wine per
day.
» Materia cost per bottle $1.00 or less

162

7.3.4

7.3.5

Create Behavior Model

« Labor cost per bottle $1.00 or less
e Investment cost of $400.00 or less

Pre-determined design
* none

Reference requirements that refer to documents and models that apply to the system
* none

Operations Concept for System Context
The Winemaker decides that it is time to bottle the wine in one of the barrels. She
tellsthe Wine Bottling System of this decision and provides information about which
wine isto be bottled, the number of bottles, and when it is to be completed. The sys-
tem uses supplies from Bottling Suppliesto bottle the wine and prepare the bottles for
sale or consumption. The prepared bottles are placed in awine rack ready to be taken
to storage in the Storage Facility.

Behavior of the Winemaker

The static context model of Figure 7-2., Context Diagram for Bottling Wine provides
only partial information about the excitations of the system. It shows only the func-
tions carried out by the Winemaker. The behavior of the winemaker for excitation of
the Wine Bottling System is completely defined in Figure 7-3., Behavior of the Wine-
maker.

W Number Request
Winemaker @ of bottles wine
Behavior 5 4 7
-
i /
W1 Location
& I.D.of |/
Order .
bottling W\ wine *

W.2 WA

@ Specify Makewine —
source Available
W.3
Specify

time

Stored

- barrels
Timefor
bottling

Figure 7-3. Behavior of the Winemaker

163

Create Behavior Model

The four functions listed in the object picture for Winemaker in Figure 7-2.,
Context Diagram for Bottling Wine, are all captured in Figure 7-3., Behavior of the
Winemaker, with their ordering and input/outputs.

Note that as presented here the text descriptions and the models are somewhat
redundant. The combination is most efficient when the text is created in a data dictio-
nary as an explanation for each element in the models.

7.3.6 Effectiveness Measures

7.3.7

164

1. Bottle wine at minimum cost.

2. Complete the bottling as quickly as possible.

3. Ensurethereis no foreign matter in the bottles of wine.
4. Bottle only good wine.

The effectiveness measures capture a small subset of requirements that are vital for
success in the marketplace for competitive cost, schedule, and quality reasons.

Intrinsic Behavior

Having been given the context diagram and other text requirements, or atext opera-
tions concept, we are now ready to begin developing amodel of the behavior for our
system. For most systems the engineers have preconceived design ideas which may,
even unconscioudly, affect their decisions in modeling the behavior. Especialy at
these early stages of development care must be taken not to introduce artificial limita-
tions. The behavior of the system will be developed in stagesin the examplein the
way it might emergein real work. What happensin real work is highly interactive
with discoveries and return to earlier work. It is not neat.

Top Level Behavior

Consider the problem of bottling wine, the work of bottling it when the wine and other
needed items are available but stored.

The first set of tasks includes getting the wine, the corks, etc., to the area, per-
haps a kitchen, where the bottling will be done. Thisis Intrinsic Behavior in that it
must be done by any bottling system whether it is transporting the itemsto the feeders
in abottling plant or carrying items from a home basement to a kitchen. Thus, we
begin the design by breaking the behavior into two functions taking place serially.

« Gather Supplies, and
* Produce the Bottles

These are shown in Figure Figure 7-4., Top Level FFBD for Bottling Wine, using the
Functional Flow Block Diagram notation.

Create Behavior Model

1.0 2.0
Gather —{ Produce the
Supplies Bottles

—>

Figure 7-4. Top Level FFBD for Bottling Wine

Expanding Gathering Supplies

There are severa subtasks within Gather Supplies. In particular we find the wine, get
the bottles, get the corks, get the cleaning supplies, and get the labels. A critical ques-
tion to ask is: Can these tasks be done in any order, or is there an imposed sequence?
The answer in this case is that they can be done in any order. Thisis represented in
Figure 7-5., Gathering Supplies For Bottling Wine, as a concurrency in that Func-
tional Flow Block Diagram. The arrows, once again, represent sequence. The and
shows that the following steps may occur in parallel at the same time.

Thisisthe concept of intrinsic behavior. Although this set of steps need not be
performed in parallel, they can be donein parallel and so they are modeled that way.

1.0

Gather
Supplies

11

Get
Wine

1.2

Get Wine
Bottles

13

Get Cleaning
Materias

14

Get
Corks

15

Get
Labels

Figure 7-5. Gathering Supplies For Bottling Wine

v

165

Create Behavior Model

166

Expanding Produce the Bottles

Aswith Gather Supplies there are several subtasks involved to Produce the Bottles.
The bottles must be filled, corked, labeled and cleaned. In addition to this basic set of
functions, afew other functions are al so necessary to have arobust behavior for bot-
tling wine. Our Effectiveness M easures stated: ‘ Ensure there is no foreign matter in
the bottles of wine'. We derive from this a requirement that the bottles be clean prior
to being filled.

Thus we introduce several functions for cleaning the bottle and testing to deter-
mineif it is clean enough to use. Figure 7-6., Fill the Bottles for Bottling Wine, shows
the FFBD for this portion of the behavior. An additional semantic constructs was
needed to describe what happens to unclean bottles. The function Look At Bottleisa
branch point, or a selection point, for the behavior with conditions for each of the
alternative paths that follow. If the bottle is clean, the filling process follows. If the
bottleisdirty it is discarded.

OK
—» Clean (—» Lookat —P» Fill —» Cork % Labd —>
Bottle Bottle Bottle Bottle Bottle
not OK

A

Dispose of
Bottle

Figure 7-6. Fill the Bottlesfor Bottling Wine

If one reverses the steps of clean, fill, and cork the bottle, one has a corked,
clean, empty bottle. These steps need to be done in this sequence. Nature and reality
do not allow them to be reversed. Thisisthe concept of intrinsic Behavior. It captures
what nature allows in its most general form.

Putting it All Together

Figure 7-7., Completed Functional Flow Block Diagram, Bottling Wine, now shows
the completed FFBD for the intrinsic behavior of bottling wine. The actual Design
Behavior of the system depends upon the available resource, on the Effectiveness

M easures that have been adopted for optimization purposes, and on the number of bot-
tles to be produced.

Create Behavior Model

—1 Get |-
Wine

|| Get Winel|
Bottles

A
A

OK
—>{angH Ge Cleanl oy o THw o Fill [Cork [Label [

Bottle Battle Bottle Bottle Bottle
not OK
L Get L
Corks
Dispose of
L | Get || ottle
Labels

Figure7-7. Completed Functional Flow Block Diagram, Bottling Wine

7.3.8 Emergent Behavior

While Figure 7-7., Completed Functional Flow Block Diagram, Bottling Wine, pre-
sented afinal version of the intrinsic behavior we have not yet finished with the
behavior modeling. We now have to consider what the desired emergent behavior is.
Factors which will alter the behavior that do not involve the structure of the fina sys-
tem should be considered. Considerations of this sort tend to limit the overall general-
ity of theintrinsic behavior.

Deriving the appropriate emergent behavior from the intrinsic behavior is one of
the key creative portions of systems engineering. No amount of formal methods and
approach can overcome bad decision making. Neither can they replace experience
and creativity in engineering. We stress as best practice the use of executable models
to help evaluate the decisions before alarge commitment is made to producing the
parts of the system. With that as genera guidance, we push on to crafting the emer-
gent behavior.

The effectiveness measures in the available information have not yet been used
in the example. Much of the impact of the effectiveness measures will be on the map-
ping from behavior to structure. They also play an important role in developing the
emergent behavior. Focus on the first two effectiveness measures.

1. Bottle wine at minimum cost.
2. Complete the bottling as quickly as possible.

3. Ensurethereis no foreign matter in the bottles of wine.

167

Create Behavior Model

168

4. Bottle only good wine.

and look at the intrinsic behavior as shown in Figure 7-6., Fill the Bottles for Bottling
Wine. Minimum cost may not be quick. Some modifications can be made to the
behavior at this point to balance these opposite pulls. In particular we look at the deci-
sion making involved with inspecting the bottle. The intrinsic behavior takes into
account only the need to have a clean bottle into which to put the wine. The bottle is
thrown away if it isnot clean after one washing. This may lead to the disposal of many
bottles which might become clean if they were washed a second time. We can modify
the behavior to reduce the cost of disposing of bottleswith little impact on completion
time. The proposed change in shown in Figure 7-8., Modified Functional Flow Block
Diagram, Bottling Wine.

— I G
Wine
| Get Wine || not OK &
Bottles bottle washed < 3 times
v

A

OK
A’Q@P Set e ——> Clean [Look at > Fill | Cork [*{ Label >

Bottle Bottle Bottle Bottle Bottle
not OK & bottle
— Get - ashed 3 ti
Corks All mes
Dispose of
L | Get || ottle
Labels

Figure 7-8. Modified Functional Flow Block Diagram, Bottling Wine

In the justification for making this change we used some rather loose reasoning that
one effectiveness measure would be improved and another would be minimally
affected. Choices of this sort are the heart of systems design and greatly impact the
merit of the total system design. In Figure 7-8., Modified Functional Flow Block Dia-
gram, Bottling Wine, the bottles are washed a maximum of three times, but two times
or some other number of times might be optimal. Itisin Core Step 5, Perform Trade-
off Analysis, that these trade-off decisions are fully defined and performed guantita-
tively. The trade-off analysis cannot be carried out until decisions have been made
about how the system will be built, what objects will be used, the attributes of those
objects, and what alternative structures are to be considered during Core Step 4, Cre-
ate Structure Model.

Create Behavior Model

Though this behavior may now seem complete it is still defective in one impor-
tant aspect which demonstrates the importance of engineering experience, creativity,
and wisdom. It isrelated to Effectiveness Measure 4. “Bottle only good wine” which
has not yet been taken into account. The defect in the behavior isthat one tastes the
wine before doing the tasks to ensure that one bottles only good wine. It isleft asan
exercise to add the necessary functions, branches, conditions, and iterations to incor-
porate “ Taste the Wine.”

7.3.9 Completing the Behavior - Adding Inputs and Outputs

What has just been modeled is but one view of behavior, the functions and control. In
order to have asemantically complete, and therefore executable, model the inputs and
outputs must be added. Figure Figure 7-9., Top Level behavior for Bottling Wine,
shows the function flow block diagram of Figure 7-4., Top Level FFBD for Bottling
Wine on page 165, augmented with input/output for each of the top functions.

Supplies A k Supplies ———
— Al o G
T 10 2.0
| Gather —¥ Producethe —»
time Supplies Bottles

Figure 7-9. Top Level behavior for Bottling Wine

The inputs and outputs for the next level Functional Flow Block Diagram can
a so be added to produce the second level behavior of Figure 7-10., Second Level
Behavior for Bottling Wine. In that figure, second level input/output has been added
and the I/O items Stored Supplies, which come from the external system Stored Sup-
plies, and Gathered Supplies have been decomposed into their second level parts.

169

Create Behavior Model

A\

&0 ocation
S & ID of 'ne

v
Number ",) wine /-
of bottl N y P -
N — ead
s - @

ed [+ | _Wine
I g'e@.“ . ’-
—- o e
ah 1 Get Wine[|

Bottles
2t|
Get Clean|_| Clean Look at F|II Cork Label
'6@' Materials > Bottle Botte | | Botle [®| Bottle [® Botle [

|

T
0 Get || |cleaned3t|mes ' J
= SR 6@@‘ & @&
e y
L | Get || L 7
o (Ss [D'ge)gﬁOf

- @

Figure 7-10. Second L evel Behavior for Bottllng Wine

This now provides enough information, expressed formally, to start at the begin-
ning and simulate the system’s operation. To do this we employe the models for exter-
nal systemsin this systems context, in this case the behavior model for the Winemaker
and the behavior model for Stored Supplies. The external systems provide the neces-
sary stimulus to our model to fully define its synchronization with the external world
and to observe our system’sinternal behavior as responses. The models are explicit
and leave no ambiguity as to what the system is to do.

7.3.10 Views of Behavior

170

When the inputs/outputs, functions, and the ordering of functions by control opera-
tionsare all included in the model, behavior isfully modeled and executable. Thereis,
however, a drawback to this view. The full models of behavior contain a great deal of
information and can be hard to read. To overcome this, two useful simpler views can
be used:

» A view of function and its ordering by control (the functional flow block dia-
gram we have been using, is such aview) and

» A view of function and input/output such as a data flow diagram.

The various diagraming techniques for the elements of behavior have been developed
over many years starting as early as the 1950s when the FFBD was first introduced.
Such diagrams convey information that is difficult to express in atextual language
with the same level of completeness. With any successful diagraming techniques,
semantic information must be readily apparent to engineers developing and reviewing
system designs.

Create Behavior Model

This function and input/output view of behavior has been captured in severa
different diagrams which use different syntax. To name afew;

e DataFlow Diagram

* N Squared Chart

« IDEFO Diagram

* Requirement alocation sheets, in text

Figure 7-11., Data Flow Diagram for Bottling Wine is a Data Flow Diagram
produced by removing al of the control symbols from the behavior.

Number relqnue ocation
of bottles & ID of

wine /
_____——"_ "~ /Tead
el Wine %’ *)
e n Cleandy Y ea ' & bottled
) e - '. bottle \ , %
storetk Get Wine 4 4. 4 .
bottles Bottles , ' ' R - \ / . ,
— i V . . .
@S -~ "{cet clean Clean Look at Fill Cork Label
Matenals Bottle Bottle Bottle Bottle Bottle
4 4
& s b ‘Q '
- OrKs ead ead

Get - asfe /
g L8] o Pame] -G

Figure 7-11. Data Flow Diagram for Bottllng Wine

This dataflow diagram with the control information removed can be rearranged
to make the information it represents more readable. Figure 7-11., Data Flow Dia-
gram for Bottling Wine, shows the rearranged version which serves as an example of
the importance of layout in any of these diagramming techniques. Although the
semantic content is the same between the two versions of the data flow diagram, the
understandability of the content for humans is dramatically improved in the second
diagram.

171

Create Behavior Model

172

e - - - > Get -'_'_‘____ %

Wine

b e - ~|Getwine| ‘ |

B
w o R IR R U N

Clean Look at Fill Cork Label
Bottle Bottle Bottle Bottle Bottle

4 ! !
S Get Clean{- . ‘ '-
S) a Materials Dispose of |- - .@3 G(Iet

Get
Bottle Corks L ab(ils

A
storeth . /Sored, _ _ "

Figure7-12. Reformatted Data Flow Diagram for Bottling Wine

ead

Thisview of behavior captures al of the input/output relationships with func-
tions. It does not carry all of the information to describe whether functions participate
in concurrency, simple sequencing, or aternative path branching. It does, however,
contain enough information to give insight concerning the control information just as
the function and control view provides some insights to the data flow considerations.

A closer ook at the dataflow diagram for bottling wine reveal s a limitation imposed
by the functional flow block diagram. The limitation that our FFBD requires all of the
gathering supplies activities to be completed prior to beginning any of the bottle prep-
aration and filling tasks. One look at the data flow diagram, especially the reformatted
version, shows that thisis clearly not necessary. Only two of the gathering supplies
tasks, Get Wine Bottles and Get Cleaning Materials need to be completed before the

Create Behavior Model

first of the bottle preparation tasks can begin. Figure 7-13., Revised Functional Flow
Block Diagram, shows the impact of these changes on the original FFBD in Figure 7-
7., Completed Functional Flow Block Diagram, Bottling Wine on page 167. It is
worthwhile, therefore, to consider what decisions we made that led to an unnecessary
limitation.

—| Get
Wine
| Get Wine not OK &
Bottles bottle Washed < 3 times
v
K| .
@} Get Cleani ™ Clean ¥ Look a Al [—» Cok > Labd [
Materials Bottle Bottle Bottle Bottle Bottle
not OK & washed
,3tim&s
Dispose of]
ottle
| | Get
Corks
L | Get
Labels
Figure 7-13. Revised Functional Flow Block Dia-

A quick review shows that nearly the first decision made caused the problem.
Figure 7-4., Top Level FFBD for Bottling Wine on page 165 divided the behavior into
two elements. Gather Supplies and Produce the Bottles. Thisfirst division created the
unnecessary limitation, yet at the time it appeared to be a reasonable expression of
intrinsic behavior. Which FFBD is more desirable to use, Figure 7-8., Maodified Func-
tional Flow Block Diagram, Bottling Wine on page 168 or Figure 7-13., Revised
Functional Flow Block Diagram? That question cannot be answered until the behav-
ior information is combined with structural information that defines how the work
will be done. There may be other variants of behavior that will be found to be impor-
tant as structure alternatives are considered. This reinforces the need to perform Core
Steps 2, 3, and 4 concurrently. It isamajor strength of the modeling techniques that
they detect and raise such issues early in the development and provide means for
quickly resolving the issues quantitatively to find a near optimal solution.

173

Create Behavior Model

7.3.11 Behavior, Structure, and Effectiveness Measures

174

For this part of the example, assume that the dominating Effectiveness Measureisto
bottle the wine as quickly as possible. If only one person is to perform this task manu-
ally, then the work of gathering items, Figure 7-5., Gathering Supplies For Bottling
Wine on page 165, must be serialized.

There are five factorial or 120 ways to do this. One person using any of these
120 serialized sequencesisadesign, amapping of the behavior onto a particular set of
objects. This transformation of the Intrinsic Behavior into a Design Behavior does not
ater the response of the system. Such transformations occur in the development of
large complex systems.

Downstream from the initia serialization of a concurrency an engineer working
on a single component may have no ideathat the sequence on which heisworking
was once a concurrency. If additional resource becomes available for incorporation
into the design, it may be valuable to recover the Intrinsic Behavior and allowed con-
currencies. It isimportant to record and keep the information of the Intrinsic Behavior,
the Design Behavior and the issues and reasons for the transformations in going to
design.

Intrinsic sequences may also be transformed to optimize Effectiveness Mea-
sures. If three people are available to bottle wine, then the sequential tasks may be
done concurrently, by setting up a pipe-line process.,

1. clean
2. look
3. fill
4. cork, and
5. label
Exactly how the pipeline is done depends on the length of time required for each
task, on the number of people or amount of resource available, and on the Effective-
ness Measures applied. In this case a reasonabl e architecture with three peopleisto
have two people clean bottles because they must be filled and rinsed repeatedly, and

one person fill, cork and label bottles. In complex systems quantitative trade-off is
performed to make such decisions.

Note that abest practice of systems engineering work isto follow the steps of the
core systems engineering process. One creates effectiveness measures, one creates an
intrinsic behavior, and one examines sets of abjects to perform the behavior. Which
set of objects to use and how the behavior is apportioned among them is a matter of
trade-off against a set of criteria. The result is an accepted architecture which encapsu-
lates the Design Behavior which is atransformation of the Intrinsic Behavior that
meets needs and is allowed by reality

Create Behavior Model

If the Effectiveness Measures were altered, then the entire solution could
change even with the same resource availability of three people. Consider the follow-
ing altered Effectiveness Measures:

1. Havethe best party possible
2. Always have ongoing work to avoid criticism

3. Bottle no more than 3 bottles of wine to serve as the Annual Memorial Wine
Bottles

4. Drink therest

A potential solution isto have Tasting taking place in parallel with every other step, a
modification of the Intrinsic Behavior. Allocate no more than one person to work on
bottling at any time. The wine bottling example has to this point illustrated the rele-
vance of:

* intrinsic behavior imposed by nature
* design behavior, transforms of the intrinsic behavior to optimize the design

» emergent behavior, the behavior exhibited by the integrated system. It should
be the design behavior.

» concurrency in considering behavior, structure and effectiveness measures

» the semantic structures (functions, input/output, control) needed for behavior

7.4 Scenarios and Response Threads as Paths through Behavior

It is often desirable, at any tier of development, to partition the creation of the behav-
ior modeling to simplify the problem and distribute it anong teams. The excitation
and the response behaviors of complex systems often encompass many alternate par-
alel paths. One of the powerful techniques for simplification and distribution isto
consider one-by-one the paths through the excitation behavior of the external sys-
tems. Each of these excitation pathsis called a scenario. For each scenario thereis
one or more response path from the system, depending upon the conditions at the
time of the excitation. Each of these response pathsiis called a response thread. The
analysis of systems by the use of excitation scenarios and response threads is a pow-
erful way to do the modeling described here and to partition the work among teams. It
is also important to realize that the scenarios and response threads must merge into
coherent and error free behaviors which contain branch points that define all of the
aternative paths. When scenarios and responses are defined independently by sepa
rate groups of people, they can easily be defined such that they are incompatible.

A second technique for partitioning the modeling of systems with complex
behavior first develops the “normal” behavior of the system - the behavior when
everything goes right. After this has been done, the engineer considers each step in
the behavior and considers how the behavior should be altered for safety, for reliabil-

175

Create Behavior Model

7.5

ity, and for all possible things that might go wrong (Carson 1995). Common examples
are recovery and rollback of computer based systems after a system crash, vending
machines that handle coins and slugs, and automobiles with safety belts and air bags.

Behavior, Context and Traceability, an Information Model

This chapter has described how to model behavior, how behavior isrelated to context,
and how traceability is maintained between text requirements and model elements. A
simple example hasillustrated the concepts. Figure 7-14., Information Model for Text
Requirements, Behavior, and Context, is a complex information model that summa-
rizes these many pages of text on asingle page. A complex model such as this has the
disadvantage of carrying such alarge amount of detail that it requires careful study for
comprehension. It has the advantage of enabling the reader to see all of the informa-
tion on one page and to focus carefully on the detail in limited regions of the model
while seeing how that region relates to the whole. The figure combines parts of earlier
figures. The basic structure of behavior is shown without shading. The classification
of requirements by how they are used is shown with dark shading A ssoci ations among
context elements are shown with intermediate shading.

7.5.1 Explanation of the Context Region

176

Examine the Object element in the top right part of Figure 7-14., Information Model
for Text Requirements, Behavior, and Context. Every object is built from many other
objects. Thisis shown by the recursive aggregation. Every object has several different
rolesit may play in the modeling of acomplex system. The role of the object depends
upon how the engineers view the object based on what they are developing for the sys-
tem. For example, an automobile engine is the Subject System to the engine design
team. The engine is a Component to the automobile design team, it is an External Sys-
tem to the transmission design team. It is an Output from the engine manufacturing
facility, an Input to the automobile assembly plant, and an Input and Output to the
just-in-time logistics system that delivers parts to the assembly plant. A single object
has al of these roles for different engineering teams.

Text Behavior Context Object |g has | Opject
Information| | Information| | Information Role
kinds of roles /\
Input/ interconnection defines f
Output E),X;%%aé subject system context, %5@3% Component
- 1+ interfaces -
Attributes Attributes ~ 2+
Externa Internal
connects | pehavior Text behavior P—
to operations ’
excite concept repon.
- accordin
according composed to 9
to of 1+
1+
1+ Response
Scenarios 1+ | threads
Interface 1t 1+ reondto I
connects to defing|
subject
structure)
defined by allocation of QO O
behavior to components i
P 0 Gefine behavior L operations
O hierarchy
L — — — — allocated to Components
in Sructure Model
. 2+ 2, all Adjudicated
Function generale & Input/Output limit choice il
1+ T consume of 110
traceto
Contral — _ i Resolution
: limit choice of functions
operations
per ®
traceto
traceto trace to budget to |ssue
1+
1+ 1t - Temporal Non-temporal| traceto
Interface Functional performance performance Desi
requirement requirement requirement requirement esgn

Figure 7-14. Information Model for Text Require-
ments, Behavior, and Context

classified by use

Text
Requirement

< traceto

Create Behavior Model

177

Create Behavior Model

Every Subject System isinterconnected with one or more External Systems
which exciteit and to which it responds. The interconnectionis called an interface and
is often sufficiently important that it is considered to be an object, called Interface, and
is fully documented. Both kinds of systems have attributes, and have a behavior.

7.5.2 Explanation of the Behavior Region

The Behavior object is shown in the center of Figure 7-14., Information Model for
Text Requirements, Behavior, and Context. As explained in earlier chapters, it is built
from Input/Output and from Function. The Functions are ordered by Control Opera-
tions.

To simplify this already complex diagram, associations that define the Control
Operations and that classify the Input/Output are not shown. Structure Operations
define the behavior hierarchy through a hierarchy of Functions and of Input/Output
These are the same Structure Operations that are used to define the Subject System
structure. Each External System has or encapsulates an External Behavior. That
behavior can be decomposed into a set of many Scenarios, each of which isan aterna
tive path through the External Behavior. Similarly, each Subject System has or encap-
sulates an Internal Behavior. That behavior can be decomposed into a set of many
Response Threads, each of which is an alternative path through the Internal Behavior
of the Subject System. For every Scenario thereis one or more Response Threads. For
each Response Thread there is one or more Scenarios that exciteit.

7.5.3 Explanation of Traceability and Budgeting

178

Functional Requirement Traceability

The Functional Requirements trace directly to the Functions which implement them.

Temporal Performance Requirement Budgeting

The Temporal Performance Reguirements are time durations which must be met by
entire response threads. When the Temporal Performance Requirements are created,
there is generally no knowledge of how many Functions and what Functions will
implement the response. Consequently the Temporal Performance Requirements are
usually asingle time duration number or probability distribution that appliesto an
entire response thread. Because a number of functions will implement a Response
Thread, the single number or probability distribution must be broken or budgeted into
increments which are assigned to the individual functions.

How this budgeting is done depends on the details of the behavior, which Func-
tionsarein parallel or in series. It can be donein advance of defining the structure, but
it must be revisited and likely redone for each of the alternative design structures
when they have been established and the functions mapped to the structures. It is most
efficiently done when behavior creation and alternative structure creation proceed

Create Behavior Model

concurrently. A particular Function might be assigned to a person, a machine, a slow
computer, or afast computer. The time to execute that Function will depend upon the
choice made. Usually it isthe overall response time of the Response Thread which is
important and required rather than the time to complete any one function. It isvery
useful to create traceability links among Scenarios, Response Threads and Temporal
Performance Requirements when the latter are received in text form, (White 1994).
This occurs naturally when the system is developed with models and the Scenarios
and Response Threads are executed to produce time lines based on the budgets
assigned to the Functions

Non-temporal Performance Requirement Traceability
These requirements trace to the attributes of objects in the Structure Model, they do
not trace to elements in the Behavior Model.

Design and Traceability
Often engineers receive design in the documents for requirements. This may happen
because the system is constrained by other existing systems or by the realities of
logistics, interoperability or suppliers. Often, however, the imposed design isinap-
propriate and needs to be rewritten as a requirement. Because of this, these text state-
ments are referred to as Design rather than as design requirements. It isimportant to
raise an Issue with the source of the Design statements, and develop a Resolution to
the Issue. That Resolution will throw the Design statement away, will transform it
into one of the other types of requirements, or will keep the Design statement as an
Adjudicated Constraint that dictates what will be used. It may dictate that a particular
Input/Output, Function, or Object be used. The traceability links to Objects appear in
the Information Models for Structure in the next chapter.

Interface Requirements
The Interface Requirements trace directly to the Interfaces. They are critically impor-
tant to ensure that components which are developed independently will integrate
smoothly and to provide for interoperability.

7.6 Pitfalls in Developing Scenarios and Threads

When many engineers are devel oping the scenarios and response threads for the sys-
tem and its context, it is very important that the scenarios and threads be aggregated
into coherent behaviors or obtained by decomposing coherent behaviors. It is very
easy to create sets of scenarios and response threads which cannot be combined
coherently into a behavior and which will lead to integration problems when the sys-
tem is built and assembled. There are techniques being used, like Use Case develop-
ment (Jacobson et al. 1992), which do not guarantee the compatibility of the
scenarios and response threads. Neither do they support trade-off by keeping behav-
ior and structure separate, but rather they inherently mix the two. They are efficient

179

Create Behavior Model

7.7

7.8

180

and useful in working through a single design alternative, but must be redeveloped if
the structure is changed by adding or deleting objects, or by combining or subdividing
objects. They are much more useful in software engineering where trade-off is not a
major issue than in systems engineering for which trade-off is a distinguishing best
practice. When an executable behavior is allocated to a design, the use cases can be
generated automatically by executing the behavior and tracking the individual paths.

Summary

How to create behavior models has been explained as a process and with asimple
example. The important associations among the modeling elements have been
described with information models and in text.

The examples have shown that the Definition of Effectiveness Measures, the
Creation of Behavior Models, and the Creation of Structure Models are closely
related. Discoveries and new insightsin any one of these activities has major implica-
tions for the others. They are concurrent activities. The Effectiveness Measures guide
the engineersin efficiently creating the intrinsic Behavior Model that will meet mar-
ketplace needs.

The next chapter shows how the Effectiveness M easures guide the engineersin
efficiently creating the Structure Models that record the selection of aternative com-
ponents and structures which constitute design and architecture. It shows how the
Intrinsic Behavior is transformed to a Desigh Behavior to match alternative designs.

Exercises

1

Create Behavior Models at the top level for the Bottling Supplies and Storage Facil-
ity objectsin Figure 7-2., Context Diagram for Bottling Wine on page 161.

Link the two models above to the top level models for Winemaker, Figure 7-3.,
Behavior of the Winemaker on page 163, and for Wine Bottling System, Figure 7-
13., Revised Functional Flow Block Diagram on page 173. Add any behavior ele-
ments needed. You will find it necessary to decide whether the Wine Bottling Sys-
tem makes requests which were not modeled in the book.

Create apartslist for the Input/Outputs of Wine Bottling System, see Figure 7-10.,
Second Level Behavior for Bottling Wine on page 170 and Figure 7-11., Data Flow
Diagram for Bottling Wine on page 171. Consider in particular Stored Supplies and
Gathered Supplies.

Consider all of the changes found necessary to add to the Top Level behavior of
Wine Bottling System. Propagate any changes needed into the second level behav-
ior of Wine Bottling System, Figure 7-13., Revised Functional Flow Block Dia-
gramon page 173.

Introduce the necessary functions, branches, and conditions to add “ Taste the

Create Behavior Model

Wine” to Figure 7-13., Revised Functional Flow Block Diagram on page 173.

a. Usethe processin Figure 7-1., FFBD View of Core Sep 3 on page 158 to cre-
ate a behavior model for the context level of an automobile.

b. Create abehavior model for an engine

c. Compare the models developed in questions aand b. What changes are neces-
sary to make the engine fit at alower tier within the automobile.

6. Doesthebehavior shownin Figure 7-13., Revised Functional Flow Block Diagram
on page 173 adapt to an assembly line? Describe how it does or why it does not.

7.9 References

Carson, Ronald S. 1995. A set theory model for anomaly handling in system require-
ments analysis. Fifth Annual International Symposium of the National Council
on Systems Engineering 1: 515-522.

Jacobson, 1., Christerson, M., Jonsson, P, and Overgaard, G. 1992. Object-oriented
software engineering. Workingham, England: Addison Wesley, p. viii.

White, Stephanie. 1994. Traceability for complex systems engineering. Fourth

Annual International Symposium of the National Council on Systems Engineer-
ing 1: 49-55.

181

Create Behavior Model

182

Create Structure Model

3

Create Structure Model

8.1 What Core Step 4 Is

Core Step 4 isthe work done by engineers to create models of how things are built
from parts, both physical and logical, and what parts to use. Professionasin different
disciplines may prefer to call these models design models, object models, information
models or architecture models. The choice of particular names is difficult because
any single concept is often named with a different word by the workersin different
engineering disciplines, and the naming is important to the workersin each field.

With the advent and popularity of object-oriented software methodol ogies, the
software engineering world is using concepts of abstraction of things (objects) and
the encapsul ation of behavior by objects, that have been practiced in mechanical,
electrical, and other engineering professions for many years. It is critically important
that the systems engineer be able to communicate rigorously with all of the engineer-
ing disciplines by transforming the systems information into the views, representa-
tions, notations and names understood by each discipline. This chapter focuses on
several aspects of structure modeling:

» A Behavior Model for the process of Core Step 4
» Anexample of selecting parts and creating a Structure Model
* AnInformation Model for Core Step 4

» How architecture and design are generated by the repeated core steps of sys-
tems engineering technical work

» How architectureisrelated to eff ectiveness measures and reusable components

» How design is simplified by architecture and reusable components

8.2 Creating Structure Models

Chapter 2 describes the basics of modeling structure. This chapter draws upon those
results to define the detailed stepsinvolved in creating astructure model. The detailed
steps are described in text, are made explicit with amodel, and are illustrated with a
simple example.

183

Create Structure Model

184

Figure 15., FFBD View of Core Sep 4, is a Functional Flow Block Diagram of
an engineer’s behavior in creating a structure model for the object or thing under con-
Sideration.

4
Create
Structure
Model
4.1 4.4
—1 _ Accept | Define |
Effectiveness .
M easures Objects
4.2 4.5 47 48
—VG@‘ Accept _"6@* Define [P Execute [—® Evauate
Behavior Attribut System Sem
Model ributes Béhavior |nS>éf aces
4.3 4.6
Accept 49
—1 Avalale — Allocate 1 | Output
Information Functions Altern%tive —»
Designs or
Architectures
Figure15. FFBD View of Core Step 4

Thefirst three steps in the engineer’s behavior, 4.1, 4.2, and 4.3, are concurrent and in
genera have no established order. The information already developed and being
developed concurrently about effectiveness measures is accepted and interpreted in
step 4.1. For the modeling of a particular subcomponent some of the effectiveness
measures may be unimportant and others important and requiring interpretation.

The information developed in prior and ongoing modeling of behavior is
accepted in Step 4.2 and used in this modeling of structure. The behavior information
may describe the intrinsic behavior of an object as dictated by reality. It may be useful
to transform this behavior as the structure modeling proceeds.

All of the applicable available information is accepted and used in Step 4.3.
Often thisincludes text requirements and an operations concept which describe what
the particular subcomponent must do. The available information may include adjudi-
cated constraints that have been resolved with the originator of the requirements. The
adjudicated constraints dictates or limit the choice of which objects to use.

The second set of three concurrent stepsin Figure 15., FFBD View of Core Sep
4, build the structures needed at this stage of the engineering.

Create Structure Model

Step 4.4 selects the objects that will be used from what is available in house,
from supplier offerings, and from catalogues or libraries of parts. Usually there are
several different sets of objects that might be used with different advantages for the
different sets. To consider all of the possibilitiesis very expensive in engineering
resources. The aternatives are efficiently pruned to a moderate number by consider-
ing the Effectiveness Measures. When lowest possible cost is an Effectiveness Mea-
sure, for example, many expensive object choices can be rejected with little analysis.
Several structure alternatives may need to be carried forward to Trade-off Analysis.
The choices under consideration can be expressed directly in the modeling using
Classification to define the potential aternatives. This ability is very useful for later
reuse of components and for very high levels of process automation with tools.

Step 4.5 of defines the attributes of the objects.

Steps 4.4 and 4.5 are not sequential. Defining the attributes will involve think-
ing about a number of objects and about the Effectiveness Measures. For example,
in the development of a satellite, designing to minimum weight is an important effec-
tiveness measure. Yet the physical weight of a custom high speed integrated circuit
chip may be unimportant. However, the power consumption of the kinds of chips
used may be very important to satellite weight because of the impact on power stor-
age, solar energy arrays and heat dissipation. The pertinent attributes are derived from
the Effectiveness Measures and from the Non-temporal Performance Requirements
many of which are expressed as equations with arguments. The attributes are the
arguments of those equations. An attribute which does not affect effectiveness or per-
formanceis not needed. Every attribute that affects performance or effectiveness
must be included for relevant abjects.

Step 4.6 alocates functions (called methods in object-oriented software) to the
objects. Often for physical objects the assignment of functions to objectsis obvious
and inflexible. A garbage disposal in the design of the kitchen isthere to grind up gar-
bage. However, some physical objects and especially people and computers are
extremely flexible in what they can do. This does require that the people be trained
and that the computers consist of both the hardware and software required for opera-
tion. Step 4.6 is concurrent with step 4.4 which identifies objects.

The behavior desired and the corresponding functions may be known before the
objects are selected. The process of encapsul ating functions in the objects often leads
to discoveries that change the objects being used. Some of the most valuable of these
discoveries occur during context analysis. They unexpectedly map behavior and
objects out of the system and into the environment or move some object and its
behavior from the environment into the system. They can result in major shiftsin
product performance and competitiveness. Asthe functions are assigned to the
objects, interconnections among objects will be established.

185

Create Structure Model

8.3

When all three steps have been completed, the result is a set of aternative struc-
tures with an embedded and executable design behavior. The design behavior may be
atransformation of the intrinsic behavior.

Step 4.7 isthe execution of the structure of the designs, manually by engineers or
automatically with atool. It validates the design behavior. The execution will find
problems such as deadlock or race conditions. It is at this point that time budgets can
be assigned to each function with assurance that the time estimates are consistent with
the properties of the object. The execution will generate an overall time line for the
designs. If this style of modeling has been carried out consistently during the develop-
ment of the tree of parts that constitute the system, the time line for a subcomponent
can be studied for itsimpact on an overall response thread of the system to an external
excitation. In many developments there is no deterministic time of completion for the
functions, but probabilities of completion can be estimated for them. In such a case it
is often possible to execute the behavior as a monte carlo calculation to generate a
probability for overall success.

Step 4.8 uses the execution of behavior to evaluate the system interfaces both
external and internal. This establishes the consistency of design with interface require-
ments. It is particularly useful in situations in which the magnitude of input/output is
known and the rate of generation and consumption is known for functions. In these sit-
uations the flow at interfaces can be established once the design behavior has been
demonstrated to be error free in step 4.7. Wait times due to lack of input are estab-
lished. Accumulation of output and storage of input are determined and can be corre-
lated with the amount of storage capacity available or required.

Thefina step, 4.9, generates al the structure information needed for the engi-
neering information base in the form required.

Example of Structure Development - Bottling Wine

Substantial information about the Bottling Wine System has been developed in Chap-
ters 6 and 7 and in the exercises. The Effectiveness Measures, Requirements, Context,
and Behavior have been described.

8.3.1 Requirements Review

186

Effectiveness Measures

1. Bottle wine at minimum cost.

2. Complete the bottling as quickly as possible.

3. Ensurethereis no foreign matter in the bottles of wine.
4

. Bottle only good wine.

Create Structure Model

Non-temporal Performance Requirements
1. Number of bottles to be produced

2. The system shall produce bottles of wine at arate up to 100 bottles of wine per
day.
Material cost per bottle $1.00 or less
Labor cost per bottle $1.00 or less

Investment cost of $400.00 or less

8.3.2 The First Parts Selection, Define Objects

Thetop level selection among things to use for the Wine Bottling System is the
choice between amanual system and afully automated system as shown in Figure
16., Top Level Selection among Objects.

Bottling System
Investment Cost
Bottling Rate
Material Cost
Operating Cost
Bottle Wine

Smallest Automated Manual
Bottling System Bottling System
Investment Cost $300k Investment Cost $400
Bottling Rate 3000 /day Bottling Rate 100 /day
Material Cost Material Cost

Operating Cost Operating Cost
Bottle Wine Bottle Wine

Figure16. Top Level Selection among Objects

Such a selection can be made only if the properties, attributes, of the objects are
known, Step 4.5, and can be compared with requirements. When the attributes are
closely related to one or more of the requirements and when the differences make the
choice clear (this case) then the choice can be made in Core Step 4. This efficiently
prunes the total amount of engineering work to be done. Often, however, there are
hundreds of parts involved and the relationships between requirements and attribute
values are complex. In this case afull trade-off needs to be made, Core Step 5, to be
described in the next chapter.

187

Create Structure Model

It is non-temporal requirement 3. above that is compared to the properties of a
manual versus automated system. The need isfor only 100 bottles per day which can
be met with the manua system. The investment required for the manual system is sub-
stantially less, soit is chosen. Information about the smallest automated system comes
from suppliers of such systems. Other intermediate situations can exist, such asa
reguirement for bottling 1500 or 700 bottles per day, which require more detailed
engineering analysis.

8.3.3 The First Parts List or Aggregation

188

It is necessary to determine al of the parts that will make up the Manual Wine Bot-
tling System. Often many of these objects have been identified or considered during
the ongoing development of behavior, and those results can add to the efficiency and
compl eteness of this step. Figure 17., First Parts List for Manual Wine Bottling Sys-
tem shows such alist.

Manual
Bottling System
Investment Cost $400
Bottling Rate 100 /day
Material Cost
Operating Cost
Bottle Wine
1+ 1+ 1+’ l+’ 1+
People || SOE || wine Cork Label | |Dedicated
Equipment || Injector Inserter Machine Kitchen
Figure17. First PartsList for Manual Wine Bottling System

Although better alternatives may be found, thislist is adequate for this example.
Investment cost is budgeted at $400. The partsin Figure 17., First Parts List for Man-
ual Wine Bottling System, are:

» Oneor more people, an appropriate number requires further analysis
* A Dedicated Kitchen which is assumed to be available at no additional cost

Create Structure Model

» Bottle wash equipment

» One or more Wash Injector that force hot water and low suds detergent into
bottle

» One or more Powered Brush to scrub the bottle
» One or more Rinse Injector to force rinse water into bottle
e Oneor more manual Cork Inserter to force cork into bottle

* Oneor more Label Moistener to wet the label, a damp sponge on a dish
» Oneor more Labeling Fixture to hold bottle and help position Label

» One or more Wine Injector to pressurize the wine barrel and force wine into
bottle

It is necessary to budget the investment cost to the partsin the figure as design
targets, to find actual investment costs for them, and to sum the actual costs for com-
parison with the investment requirement. This calculation cannot be performed until
the number of partsisfound by trying different alternatives.

8.3.4 Allocate Functions

To find the number of partsto use, we allocate the wine bottling functions to different
numbers of people. The FFBD view of intrinsic behavior of the Wine Bottling System
is repeated from Chapter 7. in Figure 18., Modified Functional Flow Block Diagram,
Bottling Winefor use in thisanalysis.

— Ge |4
Wine
|| Get Winel| not OK &
Bottles bottle washed < 3 times
v
| OK
—>angH GeL Cleant b tw 1 o Fill > Cork [Label >
Bottle Bottle Bottle Bottle Bottle
not OK & hottle
— Get washed 3 times
Corks
Dispose of]
L | Get [ottle
Labels
Figure 18. Moadified Functional Flow Block Diagram, Bottling Wine

Time estimates are needed for one person to do each of the tasksin the figure.
These times can be summed to see if the desired bottling rate of 100 bottles per day
can be met.

189

Create Structure Model

190

The best values for times or for attributes of objects are obtained by measure-
ment of the activity or object. When thisis not possible, simulation gives the next best
values. When that is not possible estimates are made based on related experience.
Actua measurements should be made as early as possible in the development cycle to
confirm budgets and estimates. Note that all of the times above would be different if
automated equipment were to be used.

Time Estimates for a Manual Bottling System

» Get wine barrel and prepareit - 30 min

» Get Wine Bottles - 30 minutes

» Get Cleaning Materials - 10 minutes

* Get Corks- 5 minutes

* Get Labels- 5 minutes

» Clean Bottle - 3 minute (filling with wash solution, brushing, and rinsing)
» Look at Bottle - 1/4 minute

e Fill Bottle- 1 minute

» Cork Bottle - 0.5minutes

» Label bottle - 0.5 minute

Case 1. Allocation to One Person

If the functionsin Figure 18., Modified Functional Flow Block Diagram, Bottling
Wine, are allocated to one person, then the five concurrent tasks that comprise Gather
Materials must be serialized and there are five factorial waysto do thisall of which
take the same total time. The choice among these aternatives is not important to the
system concerns except for one important consideration.

Adding up the time estimates above for serialized tasks, Gather Supplies will
take 1 hour and 20 minutes. What el se does the person have to do in an eight hour
day? Eat lunch, 30 minutes. Two work breaks of 10 minutes each. Clean up the
kitchen at the end of the day of work. Note that these times were not included in the
intrinsic behavior, and for a good reason. They are specific to people doing the work
and are not required by an automated system. For this design solution they must be
considered because they impact the work accomplished and the operating cost.

Thisis an example of discovery during the creation of structure that impacts cre-
ation of behavior. The time for clean up at the end of the day is estimated a 30 min-
utes. Gathering supplies, lunch, two breaks and clean up take 2 hours and 40 minutes,
leaving 5 hours and 20 minutes for bottling wine. Cleaning, filling, corking, and | abel-
ing one bottle takes 5.25 minutes. One person must perform thisin series. One person
can produce only 61 bottles per day. This design isrejected as being not feasible.

Case 2. Allocation to Three People

Create Structure Model

If the tasks for bottling wine are all ocated to three people, there are anumber of ways

to make the assignment, one of which is shownin Figure 19., Allocation to Three

People.

Figure19. Allocation to Three People

Manual
Bottling System
Investment Cost $400
Bottling Rate 100 /day
Material Cost
Operating Cost
Bottle Wine
3 | 1 1| 1 | 1
People s\?;gﬁ Wine Cork Label Dedicated
have| Equipment || !njector Inserter Machine Kitchen
Roles
Get Wine Get Bottles Get other
Person Person Supplies Person
Burdened Saary Burdened Saary Burdened Saary
Get Wine Get Bottles Get Wine
Clean Bottle Clean Bottle Clean Bottle
Look at Bottle Look at Bottle Get Corks
Dispose of Bottle Dispose of Bottle Get Labels
Clean up Clean up Get Cleaning
Materias
Fill Bottle
Cork Bottle
Label Bottle
Clean Up

The design also captures decisions as to how many pieces of equipment are made

available.

191

Create Structure Model

192

Because we have the Intrinsic Behavior and time budgets or estimates for each
step, we can manually execute the behavior for this assignment. This execution can be
done automatically with an appropriate design capture tool. The top level task Gather
Materiasis done by the three peoplein paralel.

» Person #1 takes 30 minutes to get wine

» Person #2 takes 30 minutes to get the bottles

» Person # 3 takes 20 minutes to get the corks and labels
» Theelapsed time for the task is 30 minutes

Clean up at the end of the day is shared by all three so that it takes 10 minutes. They
take two 10 minute breaks and a 30 minute lunch at the same time. These activities
take 90 minutes and leave 6 hours and 30 minutes for bottling wine. Cleaning and
looking at the bottles is now done by two people at the same time so that the time per
bottleis reduced from 3.25 minutes to 1.63 minutes. Filling, corking, and labeling the
bottles takes 2 minutes so that the total time per bottle is 3.63 minutes. The three peo-
ple can bottle 107 bottles per day on this basis using only one set of equipment. This
means that several pieces of Bottle Wash Equipment must be shared by two people.
Further modeling will show that thisis readily done if they synchronize their activi-
ties. Such synchronized parallel resources are frequent solutions to system problems.
An explicit model of thistransformation of behavior isleft as an exercise.

The Simplest Allocation, Case 3

A major problem in Case 2 isthat one of the persons must periodically wait for others
to complete their tasks. This showsup directly in automatically generated timelinesas
wait periods. There are simpler and better feasible solutions than Case 2. If only two
people are applied and each person does al of the functions on the same equipment
the throughput is better than the two previous cases. This solution is |eft as an exer-
cise.

Allocation in the Context of the Problem, Case 4

Very often the most important alternative allocations of functionsto objectsisdonein
the context of the problem. The critical question is: are there any functions that have
been assigned to the Wine Bottling System that could be better done by one of the
External Systems in the context. Sometimes imposed constraints prevent such alloca-
tion changes. In every case it is valuable to think creatively about the issue.

Cleaning the bottles takes appreciabl e time because they must be soaped,
scrubbed and rinsed. Some may not be clean after one cleaning. If clean bottles are
obtained from Bottling Supplies the cleaning step can be totally eliminated. The bot-
tles need to be stored to stay clean with aprovision to return to the supplier any that do
not pass an inspection for cleanliness. In this case one person can produce about 160

8.3.5

8.4

Create Structure Model

bottles per day, two people 375 bottles, and three people 584 bottles. The cost of pur-
chasing clean bottles and of keeping them clean in storage, as well as the storage
itself, should be considered.

Interfaces Among People

Where interfaces occur and what happens at the interfaces depends upon how the
functions are allocated among the objects.

In Case. 1 there are no interfaces among people. In Cases 3. and 4. the people do
not interact directly, but their activities must be synchronized because they share the
same equipment for performing the bottling. When tasks are performed by people,
they can be trained to synchronize their work using visual and voice cues. Thisis not
the case for computers and machines which reguire a resource with its own behavior
to ensure synchronization. The synchronization can be based on broadcast timing as
in the case of a coxswain calling the stroke for a crew team. It can be based on succes-
sive release of shared facilities asin this example. It can be based on quickly servic-
ing demand as the demand occurs asin the case of several elevators serving the
occupants of a building.

In Case 2. there is a synchronization between two of the people and an interface
between each of them and the third person who is filling, corking, and labeling bot-
tles.

Information Model for Structure

The information model for structure is very similar to the information model for
behavior illustrated in Chapter 7. The decomposition of Behavior into Input/Output
and Function ordered by Control Operations has been deleted to simplify a complex
diagram. Two structure items have been added: Attributes which are a part of every
object description and Component I nterfaces which exist whenever objects are built
from other objects. Both information models capture associations with context and
with text requirements. In Figure 20., Information Model for Text Requirements,
Sructure, and Context, the added structure items are shown shaded dark for ease of
finding them in the diagram.

193

Create Structure Model

Object | g has Object
Role
Input/ External interconnection defines Subiect
Output Systems subject system context, Systjem
- 1+ interfaces -
Attributes Attributes ~
t Eélgema] Text t!gltwemaj —
connects avior ¢ avior
operations
excite concept respond
according according
to composed to
of 1+
1+
1+ Response
Scenarios 1+ threads
n 1+ respond to 1+
Interface connects to define
subject
structure
defined by allocation of O O flefine behavior
behavior to components i
p ‘ operations
defined by alloca allocated to o 2+
| ined by allocation
Fn?érn a%%mt Component
have g
Adjudicated
constraint
. trace to?
associated
through Attributes Resolution
allocation [] []
of functions traceto
traceto |traceto | to Components budget to budget to Issue
. . 1+
1+ 1+ Temporal Non-temporal| traceto
Interface Functional performance performance .
requirement requirement requirement requirement Design
classified by use
Text
Requirement |~ traceto
Figure 20. Information Model for Text Requirements, Sructure, and Context

194

Create Structure Model

Theinformation item Component has been moved to the middle right side of the
Figure. Component remains one of the roles which any object may take. A Subject
System is built from two or more Components. Each Component may in turn be
assembled from two or more Components. Behavior is alocated to the Components
and shown in the example in this chapter. The Functional Reguirements are associ-
ated with the Components because Functions have been all ocated to the Components
and the Functions trace to the Functional Requirements. For any component one can
look up the Functions it encapsulates. One can trace from these Functionsto the
Functional Requirements they satisfy. One of the strong features of the modeling
described here is that it enables one to reallocate Functions among Components and
automatically maintain the traceability.

Tempora Performance Requirements budget to the Functions encapsulated in
the Components. These budgets must be reexamined whenever the allocation to
Components is altered because different things have different capabilities in their
speed of executing the same Function. The Components have Attributes and the Non-
temporal Performance Requirements like cost, weight, reliability, power consump-
tion, memory size, etc. budget to the Attributes in accord with an appropriate aggre-
gation equation.

When Design isfound in the Text Requirements, an I ssueis raised with the orig-
inator of the Design and a Resolution is reached. One of the possible outcomes of that
resolution is an Adjudicated Constraint which predetermines what components shall
be used. Another outcome of the Resolution is that the Design was inappropriate and
isre-expressed as a Text Requirement. In that case the Resolution traces to Text
Requirement.

8.5 Architecture and Design

The descriptions above show a repeated process for development of design or archi-
tecture, but do not indicate the conditions, circumstances, for devel oping architecture
versus design. System designs produce anear optimal solution for aparticular system
problem. Architectures produce a set of rules or constraints that limit design choices
but lead to near optimal designs for awholefamily of system problems. Architectures
define the invariant properties across a family of products; the aspects of design
which will be the same for all member of the family. If oneis building a grade school
or ahome for the elderly, specific and detailed designs (blueprints) are required for
each building. Because both types of buildings need to provide safety and fast access
to the outdoorsin an emergency like afire, they may both be built to an architecture
that dictates one floor construction with access to the outdoors from every classroom
or patient room. Architectures provide constraints to structure and behavior that are
near optimal for awhole class of problems. Architectures deal with the relationships
among classes of things and classes of behavior. Mainframe computers and client-
server computer systems are two architectures for computer systems.

195

Create Structure Model

196

The same core technical systems engineering technical processis applied to
model the many stages of complex system design or system architecture. What
changes in developing architecture rather than design is not the process but what the
process is applied to, (Oliver 1995)

Applied to Generates
Business using product Businessdesign & vaue of
(concept analysis) product segments
Product Product design & sub-
(system analysis & design) | system requirements
Subsystems Subsystem design, sub-
(subsystem analysis & subsystem requirements
design)

Table 3: Application of Core Process for Design

Application of the core process in this fashion produces the requirements and
designs for the partstree for the system. The core process generates the parts tree, the
interconnection information, behaviors (functional requirements), performance
requirements, the response information needed for test and validation and a build plan
for each node of the partstree. The things, components, objectsin the parts tree would
be described as object instances by a software engineer. They are particular things
selected because their property (attribute) values and their behaviors result in a near
optimal design solution as established by trade-off.

It isimportant to realize that the design space is very large, and that finding a
near optimal solution iscomplex. The algorithmic complexity of the problem has been
shown to be NP-Complete, (Chapman and Rosenblit 1995). This means that thereis
no known efficient algorithm for finding an optimal solution. Asthe problem size
increases, the number of steps needed and the time required to solve the problem algo-
rithmically may increase exponentially.

Engineers solve such complex problems by restricting the components or objects
to be considered to alimited set which are either available from suppliers or which can
be designed and built at acceptable cost and risk. They further simplify the problem by
restricting the manner in which the components or objects behave and are intercon-
nected. The description of these behavioral and structural restrictions is what we call
an architecture. Architectures describe the kinds of components or objects to be used
and how the kinds of components or objects are interconnected.

Create Structure Model

Notethewords“kind of” in the last sentence. An architecture may typically call
for interconnection by bus structures or by point-to-point wiring. There are many
instances of busses and of point-to-point wiring. Theword “bus’ as used hereisa
class name. It is a generalization of more specific bus classes such as PCl-bus or
VME-bus. Architectures can usefully be described with classes and class relation-
ships. Designs become particularizations of the architecture.

Table 3 on page 196 describes design, but does not illuminate how architectures
are developed. Both architectures and reusable components or object classes are the
result of Domain Analysis, (Oliver 1995). What differs between design devel opment
and architecture development is what the core processis applied to.

Applied to Generates
Collection of businesses Business designs & com-
using product or product mon product or product
segments segments of high value
(domain analysis) across businesses or time

Common products or seg- | Common product architec-
ments (architecture analy- | ture and reusable products
Sis & design) or segments/ components

Table 4: Application of Core Process for Architecture

Domain analysisis the process of analyzing the application of a product to a
collection of businesses. It establishes the value of the product and its major segments
to the businesses. It results in a modification of the businesses, a new architecture for
them with the product in place. It establishesthat all of the product is valuable to the
businesses or that particular segments of the product are of benefit to them all. If only
particular segments of the product are of value across the businesses, it will be impor-
tant to make the mgjor product subsystems match the valuable product segments. One
can then produce and deliver to each business the product segments of value to that
business at minimum production cost. The structure of agood architecturesis driven
from an analysis of value to a collection of businesses or buyers.

Examples of this are both common and plentiful. If one wantsto buy acar
(class) and has selected a particular brand and model (subclass of car) one can still
select asix cylinder engine (subclass of engine) from the available kinds of engine
(class) depending upon the performance or the economy that is desired by a user. A
good architecture for automobiles gives the buyers choice in automobile performance
and operating cost because that choice has value to the buyer for the buyer’s use or
business. Though this use of “class’ and “instance” may appear to be atrivial renam-
ing of common ideas, it is not trivial but rather an important distinction between the
concepts of class and instance, and aggregation and classification which are blurred

197

Create Structure Model

8.6

198

or absent in much engineering work. By using these concepts and abstractions rigor-

ously, both the system models and the descriptions of the system engineering process
can be made rigorous. If rigorous, they can be automated and executed by computer. If
rigorous, then information can be transmitted by systems engineers to the other engi-
neering disciplines without error and ambiguity.

Architecture, Applications, Effectiveness Measures and Reuse

When architectures are evolved from market experience or developed from effective
domain analysis, they endure for an appreciable time. Over time the architectures will
change. Many businesses have remained locked to aformerly effective architecture
and have suffered severe business contraction by not moving to appropriate new archi-
tecturesin their product as rapidly as competition. In the computer world main frames,
multi-tasking operating systems, mini computers, and client server systems serve as
examples. It isuseful to list major factors that drive architecture and its change:

1. Thegeneral behavior required by a domain of application
2. The effectiveness measures

3. Thekinds of objects available for the application domain; the available classes
for architecture.

Pyle, et. d., (Pyle et a. 1993) have developed a useful taxonomy for real time sys-
tems that classifies applications according to the general behaviors that are required.
Five primary features with binary values define 32 primary classes of applications.

The effectiveness measures drive the architecture solution. If availability isa
high priority effectiveness measure, and if the hardware components have individual
failure rates too high to meet the availability, then a redundant architecture with soft-
ware to detect failure and provide recovery will be necessary. This effectiveness mea-
sure will have to be prioritized against others like cost and weight.

The effectiveness measures a so change over time. In early phases of theintro-
duction of medical X-ray Computerized Tomography imaging equipment, the product
architecture was driven by performance (image quality and dose to patient), through-
put, and field service. Hospital s with such a machine were at state-of-the-art. AsCT
machines became standard equipment in hospitals, architectures meeting acceptable
performance and low cost became important. In latter phases of the market where
sales were saturating, field service and availability dominate and automated remote
machine diagnostics impacts the architecture.

Over time there are mgjor changes in the available components from which to
synthesi ze systems. In the case of X-Ray CT systems these changes overlapped the
changes in effectiveness measures. Computer hardware shifted from mini-computers
to micro-computers. New bus options became available and software could be distrib-
uted.

Create Structure Model

Application of the systems engineering technical process provides for modeling
of all of these factors and trade-off among the options.

8.6.1 Design Simplification with Architecture

Design work is made efficient by using the architectural models and alimited set of
component choices to prune the design solution space, to shorten the design process,
and to produce similar and consistent designs over severa product developments and
releases. For afeasible design al of the requirements must be met in addition to the
effectiveness measures. For a near optimal design the specific objects chosen to
include in the design must result in near optimal values for the effectiveness mea-
sures.

The critically important factors for developing the design are:
1. The architecture to be used
2. The specific emergent behavior required by the specific application.

3. The effectiveness measures for the specific application at a particular timein
the market evolution

4. Thekinds of objects availablefor the specific application; the avail able classes
for design. They are limited by the state of technology and change over time
with technical advancement.

8.7 Summary

The process for creating structure models has been described as a behavior and illus-
trated with an example. It proceeds concurrently with the definition of effectiveness
measures and the creation of behavior models. Alternative mappings of the desired
emergent behavior onto alternative sets of components generates alternative designs
and architectures.

The number of possible designs and architectures, the solution space, is very
large. The general problem is NP complete. For efficient engineering it isimportant
to prune down the number of choices to be considered without loosing the best alter-
natives. Effectiveness measures help guide this pruning during the work. The applica
tion of established architectures prunes the work.

Architectures are devel oped with the same technical systems engineering pro-
cess that appliesto design. In developing architecture the processis applied to a
domain - to acollection of businesses and the product and product segments that have
value across the businesses. The same processis used to create designs, but it is
applied to a specific application - a specific business and the product that has value to
that business.

199

Create Structure Model

8.8

200

The three concurrent Core Steps: Define Effectiveness Measures, Create Behav-

ior Model, and Create Structure Model together result in design or architecture alter-
natives. Quantitative trade-off is used to select among these alternatives. Trade-off is

the subject of the next chapter.

Exercise

1

Work through Case 3., from Section 8.3.4, Allocate Functions on page 189. Isit as
productive as the use of three people as assigned in Case 2?

Consider the rewashing of bottles that are not clean after the first pass. Create
appropriate attributes for the object bottle. How many attributes are needed?
Assume a set of numbers for the attributes and estimate the impact on productivity
of rewashing bottles. Estimate the cost of rewashing versus the savingsin bottles.

Create a design behavior for Case 2. Allocation to Three People. Include the syn-
chroni zation of the two people cleaning and inspecting bottles. Draw atimeline for
each of the persons.

Modify Figure 7-2., Context Diagram for Bottling Wine on page 161 and Figure
17., First Parts List for Manual Wine Bottling System on page 188 to define Case 4.
which allocates cleaning the bottles into the External Systems the Context.

Develop a structure model for a system for baking cookies. Use arecipe from a
cookbook as the behavior model.

a. decide what the boundaries (context) of the system will be.
b. develop objects for the system

c. dlocate the behavior to the objects

d. develop attributes for the objects

Consider a caveperson throwing rocks to kill an animal and a missile defense sys-
tem. Develop a structure description to represent both of these systems.

Describe the relationship of functional requirements to behavior. See Figure 20.,
Information Model for Text Requirements, Sructure, and Context on page 194.

Give three examples of product lines that have experienced stable architectures for
10 or more years.

Give three examples of businesses that failed because they did not adapt their archi-
tectures.

Create Structure Model

8.9 References

Chapman, William L. and Rozenblit, Jerzy. 1995.Complexity of the system design
problem. 1995 International Symposium and Workshop on Systems Engineering
of Computer Based Systems. Tucson, Arizona. 51-57. IEEE#95TH8053

Oliver, David W. 1995. Systems engineering & software engineering, contrasts and
synergies, Fifth Annual International Symposium National Council on Systems
Engineering K. Louis, MO. Vol. I, 701-708.

Pyle, lan, Hruschka, Peter, Lissandre, Michael, and Jackson, Ken. 1993. Real Time
Systems, Chichester: John Wiley & Sons

201

Create Structure Model

202

Perform Trade-Off Analysis

9

Perform Trade-Off Analysis

9.1 What Core Step 5 1s

Core Step 5 isthe work done by engineersto choose among the alternative designs or
architectures that emerge from the three preceding modeling steps. It is the effort that
establishes that a design meets both the functional and performance requirements and
isfeasible. It isthework that selects from among the several possible feasible designs
or architectures the one most nearly optimal for the marketplace.

The output from trade-off is the selected design or architecture that will be
implemented. Architecture and design exist at every tier of the system partstree. A
useful high value product can impact and alter the architecture and design of the busi-
ness that incorporates it. An architecture and design also exist for the system, its sub-
systems, sub-sub-systems, etc. The architectures and designs for different parts may
be radically different. The choices among designs and architectures for each part of
the system are based on the impact of that part on the system performance and effec-
tiveness, not on part performance and effectiveness. Values for the important
attributes of the parts must be known to calculate impact of the part upon the system.
This chapter focuses on several aspects of trade-off:

» A Behavior Model for the process of Core Step 5

e Complete identification and specification of attributes of objects

» Performance calculated from the attributes of objects or obtained from survey
» Physical measurement, simulation, and estimation to get attribute values

e Cadculation of performance of each aternative

o Calculation of effectivenessfor each alternative

* Thetrade-off decision

e Aninformation model for trade-off

» A discussion of tools and automation of the process

203

Perform Trade-Off Analysis

9.2 Trade-off

The FFBD that refines Step 5, Perform Trade-off Analysis, is shown in Figure 9-1.,
FFBD View of Core Sep 5. The inputsto this step from earlier steps have been
described. They provide a complete executable description of the design or architec-
ture alternatives. They define al of the performance requirements and effectiveness
measures, the defining equations, and the attributes needed to evaluate the equations.
What is missing are the values of the attributes. Both the values of the attributes and
the variances in the values are needed. Information is accepted in steps 5.1 through
5.3. In step 5.4, one or more of the alternatives is selected and then evaluated in steps

5.5 through 5.11.
5.1 55 Yes|
Accept |- — 1 Measure |
Effectiveness Attribute o >
Measures Vaues culale |- Other
System Alternatives
Effectiveness
52 54 5.6 * Noy
— Accept > : o Simulate H
@} BehaSP or Select A@ Attribute 5.10 513
Model Alternatives Values Caculate Feasible
System Alternative
_»
Performance
5.3 57
1 Estimate |
'g%?gg{ - Attribute Yes No
Maodel Values
to core
58 2.14 sepl
| | Peform || Display ®
5 Effectiveness System
e Measure Effectiveness
Trade-off | Survey *
Analysis 515
Core Step 4.5 59 Choose |
| | Pefform || Alternative
Priority Structure
Survey
Figure9-1. FFBD View of Core Step 5

9.2.1 \Values of Attributes
The values of the attributes are obtained by measurement, physical simulation, and
estimation. As a project evolves, the level of detail increases, and hardware and soft-
ware are produced, it is possible to improve accuracy by replacing estimates with sim-
ulation, and simulation with measurement.

204

Perform Trade-Off Analysis

Measurement.

The best values of attributes for cal culation of system performance and effectiveness
are obtained by measurement of the attributes on components produced under pro-
duction conditions with production tooling. Modern systems have been built on
aggressive schedules with 80% of the hardware built in this manner and tested as
components prior to first assembly and test, (Reugg, Field, and Boldblatt 1993). Mea-
surements on prototypes or brass boards are somewhat less reliable because of the
influence of actual production conditions.

Simulation.

When parts are not available for measurement or when the measurement process is
expensive or time consuming, attribute values can be calculated by simulation. The
results are only valid if the simulation technigque has been verified to be accurate by
comparison of simulation results with actual measurements. In some cases the simu-
lations are not sufficiently accurate for absolute values of attributes, but can be used
effectively to interpolate between more expensive measurements.

The simulations used in Step 5.6 for these purposes are based on the equations
of physics, chemistry, biology, materials science, communications engineering, com-
puter science, etc. They very often use numerical techniques to account for complex
boundary conditions. They simulate the physical and logical reality of the compo-
nents. They are not the executions of behavior models discussed earlier.

Estimation.
When neither measurement nor simulation is possible one resorts to estimation. The
need for estimation declines as work progresses. The very best available engineering
experience needs to be used for estimation. People are generally consistent in their
estimates. However, some people habitually estimate high, some on target, and some
low. It isimportant to track the sources of the estimates and compare them to histori-
cal data. Multiple estimates for the same attribute are developed with survey tech-
niques.

The values for attributes improve as the development proceeds. Pre-production
prototypes are often hand assembled by very knowledgeabl e craftsmen. Parts may
have been hand tooled and adapted to fit the evolving design without al of theinfor-
mation incorporated in the system design models. For software, alphatest quality
often does not include all of the rigorous features of production software. Portions
may be stubbed out and vital areas such as error recovery may beincomplete. Any of
these conditions can affect the results of measurements on components and the sys-
tem. It is necessary, therefore, to compare current results with prior values used in
trade-off analysis. If large discrepancies occur, they must be tracked down and
explained. If the discrepancies persist, the prior trade-offs need to be re-examined.

205

Perform Trade-Off Analysis

9.2.2 Survey

Some of the alternative components that are defined during the development of
designs and architectures need to be selected based on the preferences of users, opera-
tors, or owners. The important criteria are appearance, feel, sound, ease of use, etc.
Thiswork iscarried out in Step 5.8 Perform Effectiveness Measurement Survey. It is
carried out for those components which are important to prioritized Effectiveness
Measures and which are selected based on preference.

The development of complex systems often spans a number of years. There may
be an appreciable passage of time between the early prioritizing of Effectiveness Mea
suresin Core Step 2 and the definition of the major design and architecture aterna-
tives for trade-off. It is often desirable to repeat the prioritizing of Effectiveness
Measuresin Step 5.9 with a selected survey group which has been shown the alterna-
tive designs and architectures. Because these efforts determine acceptance in the mar-
ket place, it isimportant to both get them correct. It is aso important to change them
only occasionally to prevent excessive change in requirements during the devel op-
ment.

The techniques described in Chapter 6., like the Analytical Hierarchy Process,
are used to perform the surveys of preference and priority to get quantitative and use-
ful results.

9.2.3 Calculate System Performance

9.24

The earlier Core Steps, 2 Define Effectiveness Measures, 3 Create Behavior Model,
and 4 Create Object Model have defined the performance equations and the attributes
which are their arguments. As Attribute values are obtained, the performance is calcu-
lable for any of the candidate designs at any level of parts hierarchy. Feasibility of a
candidate design is shown when its calculated performance meets or exceeds the sys-
tem level requirement. The calculation of system performance, Step 5.9, from the
parts tree and the attributes of the components can be automated when the design is
captured in executable models.

Iterate

If no design meets the specified system performance, then one iterates. Alternatively
one relaxes some of the requirements, or the project is abandoned as being infeasible.

9.2.5 Calculate System Effectiveness

206

System Effectiveness Measures are calcul ated in the same manner asis performance.
These measures are calculated only for those candidate designs that are feasible,
which meet performance requirements. Automated cal culation using the parts tree,
structure information where required, defined attributes, and defined equations pro-
vides amagjor savingsin time and cost.

Perform Trade-Off Analysis

9.2.6 Other Alternatives

If any design and architecture aternatives have not been evaluated, the process
returns to step 5.4.

9.2.7 Display System Effectiveness

Often there are from three to about ten effectiveness measures which depend on a
number of attributes of hundreds or thousands of partsin complex and non-linear
ways. Thereisthe choice of examining theimpact of the design alternatives on the set
of effectiveness measures, or of combining the effectiveness measuresinto asingle
cost function with weighting factors. The advantage of the single cost function is that
it provides a single number on which to base the selection of the design to be used.
The advantage of examining the set of individual effectiveness measures and how
they vary with aternativesis that one can see where the sharp maxima and minima
occur and where the broader maxima and minima occur. It is sometimes prudent to
select a somewhat less optimal design if maximavary slowly with attributes so the
tolerances required on the attributes to can be large.

There are anumber of convenient ways to display the effectiveness measure
results. If the alternatives are discrete, use component A or B or C, then atable, abar
graph or a spread sheet can capture much of the information, (Ghassemi, Conway,
and Hines 1994). If the alternatives are continuous, like aweight or aphysical dimen-
sion, then multi-dimensional graphs can be plotted using visualization tools. A vari-
ety of techniques are available to look at multivariate data. Three dimensions, color,
shape, motion, and spatial positioning can all be used to represent different aspects of
the data.

Several quality methodologies like House of Quality and Quality Function
Deployment (Clausing 1994) define views which capture this type of information.

9.2.8 Choose Alternative Structure

The choice of a design solution based on effectiveness often needs consensus among
management, customers, and other stakehol ders.

9.3 Information Model

Four objects, which are shaded in Figure 9-2., Information Model for Perform Trade-
off Analysis, were added to the earlier model (Figure 6-10., Information Model for
Create Effectiveness Measures on page 151) to account for performance as well as
effectiveness. These objects include Non-temporal Performance Reguirements and
the Non-temporal Performance Equations from which they are calculated. They
include Temporal Performance Requirements and the Time Lines that are compared
to them.

207

Perform Trade-Off Analysis

208

Simulation, measurement, and estimation provide values for the attributes of the
components. Non-temporal performance eguations use the attribute values as argu-
ments of equations that cal culate the performance of the system. The calculationsrely
on the parts tree and, in some cases like reliability or moment of inertia, on system
structure. The calculated values are compared with the required values of performance
at system level to establish feasibility of the system.

The Temporal Performance Reguirements are response times that must be met
by the system. When the behavior and structure are captured in executable models,
they can be executed by an execution engineto produce overall system timelines. The
time lines are the response threads through the system based on the individual
response times or response time probabilities for the components. The execution
engine can be a computer tool or ateam working manually. The manual work istime
consuming and difficult to keep free of errors.

Perform Trade-Off Analysis

Effectiveness
Measure No?-temporal
performance
Survey requirement
generates computed
. . . with
Effectiveness Effectiveness Effectiveness
Measures Measures Measures
from from from
Modeling Preferences Attributes
1+
Non-temporal
Priority performance
Survey equations

generate

. Effectiveness Effectiveness
Priority Measures Measure
Equations

ranked by determine

alternatives

establish

arguments for

Cost selects | Subject
Function System .
Design Attributes ",
compute Attributes have
executes .
Execution behavior ggsﬁ’:
Engine behavior Values
generate
provides
| Value Computation |

validate describe

structure

have

Temporal
perf(?rmance Structure Object Simulation
requirement operations Interfaces

Estimation

Figure9-2. Information Model for Perform Trade-off Analysis

The many different physical simulations which must be performed to get
attribute values for trade-off require many different sophisticated modeling tools - for
stress, heat transfer, fluid flow, crack propagation, chemical reaction, communica-

209

Perform Trade-Off Analysis

9.4

tions fidelity, logic evauation and design, etc. Their inputs are related to the informa-
tion stored in the system modeling tools and they provide attribute val ues needed by
the system modeling tools. In addition there are text generation and text requirement
management tools. The present situation is described below.

The Problem of Tool Integration

Multiple tools exist for managing the Initial Information, for the Behavior and Struc-
ture Modeling, for roll up of attribute values to performance and effectiveness, and to
perform the surveys. Powerful visualization tools exist to capture multi-dimensional
trade-off results and to display them to management, users, and customers. There are
toolsfor risk analysis and scheduling and for configuration management of al the
information. There are many tools for physical simulation of components. Most of
these tools have been developed independently and do not talk with one another. The
integration of the tools into an environment is presently left to the engineering organi-
zation buying the tools. Integrating a large number of tools with tailored binary inter-
faces results in costly maintenance as the tools are independently revised by their
vendors.

The problem is difficult because the same named piece of information is not
used with the same meaning in different tools, the data structures are defined differ-
ently, the systems for managing data are different, and many tools provide no accessto
their stored data. It is a matter of engineering to reconcile the data structures and data
management systems. More difficult is the lack of any accepted guide to the informa:
tion required to do systems engineering and specific unique meanings for each piece
of information. It isavision of this book that meta-process descriptions of systems
engineering described in executable models can provide rigoroudy defined informa-
tion and become a basis for tool evolution into integrated environments. The meta-
process definitions must come from systems engineering professionals.

Similar steps have been taken in mechanical engineering and in digital engineer-
ing to make possible the integration of design tools and manufacturing tools. Feasibil-
ity of the tool integration has been demonstrated in these other fields after certain
prerequisites have been met.

9.4.1 Prerequisites for Tool Integration

210

There are anumber of fruitful approaches and architectures, like CORBA, DCE, and
PCTE, to implement tool integration (Epperson 1994). None of these approaches can
succeed unless the work to be doneiswell defined so that functionality is consistent
across the tools. None of these approaches can succeed unless the information items
are treated with consistent meaning in all the tools. Prerequisites for automation of
systems engineering with an integrated tool set are:

1. A well defined engineering process captured in executable models

2. A set of information models for each step in the process

3.

Perform Trade-Off Analysis

A rigorous implementation standard for exchange of data. Several exist
(Epperson 1994).

Without this information, tool vendors automate particular methodol ogies

which are incompatible with one another, make different semantic assumptions about
entities given the same name, and have no available standard for creating interfaces
among tools. With the information above the following is possible:

1
2.

Comparison of the different systems engineering methodologiesin use.

Automation of the meta-process so that the views and notations needed for dif-
ferent systems engineering methodol ogies can be generated and projected
from an abstract model stored in the tool. Multiple views are consistent by
generation from the data in an abstract model.

Generation of detailed requirements and specification in executable form in
the views and notations of the downstream engineering disciplines.

Maintenance and enhancement of large systems by modifying requirementsin
models and regenerating the downstream details. Thisis much less costly than
changing downstream detail directly, and it maintains system documentation
throughout the maintenance and enhancement cycle. It eliminates future
reverse engineering.

Integrated tool setsthat span the systems engineering work.

Ability to search the architecture solution space or the design solution space
semi-automatically by specifying search rules and evaluating effectiveness

reports. Thisisthe efficient way to develop new product releases based on
product already in the market. It has been applied in other fields.

9.4.2 A Comparison with Mechanical Engineering Evolution

Mechanical engineering and some of the other engineering disciplines predate sys-
tems engineering and as aresult have evolved farther. They have gone through stages
of development, documentation and automation that systems engineering is just
entering. It isinstructive to look at analogies with these older disciplines as a means
of understanding the stages through which systems engineering is likely to pass

Rigorous Capture of Details
Mechanical engineering must capture the details and the tolerances of three dimen-
sional geometry; must describe parts accurately. English language alone is inade-
guate. For all but the simplest cases systems engineering must capture the needs of
users and describe the behavior and structure of a system that will meet those needs.
Natural language alone is inadequate to handle the detail. Mechanical Engineers
accomplish this through the application of a drafting process that allow engineersto

211

Perform Trade-Off Analysis

212

define objects in three dimension using three orthogonal views. Any other rotated
view can be derived from the three by mathematical and graphic techniques. The
foundations were described in 1801 in La Geometrie Descriptive, by Gaspaard
Monge. Systems engineering has not yet agreed on arigorous definition of process,
the information captured at each step, and alanguage for expressing systems work.

Automation

Mechanical engineering began to be automated in the 1960’'s and 70’s with the advent
of mini-computers. Companies like Applicon, Gerber, and Computer Vision provided
tools to capture geometry. But these tools could not talk with one another or with the
many tools in manufacturing which must capture the design geometry and modify or
transform it. The manufacturing tools create machine tool cutting paths, geometry for
fixtures, allowances for part shrinkage during sintering, etc.

The need for an integrated set of tools led to the formation of professional orga
nizations dedicated to defining the semantics and information required for geometry
definition and transformation. These efforts were stalled for many years until the defi-
nitions began to be written in computer executable form. The language chosen for this
was EXPRESS; other languages could have been chosen. With the rigor of executibil-
ity it has been possible to create the STEP/PEDES standards and for vendorsto
develop tools which can be integrated into an environment. Mgjor aircraft have now
been designed by Boeing with automated geometry transfer, (Norris 1995).

Systems engineering needs to provide detailed information to other engineering
disciplines in their own languages and notations which are and will remain inconsis-
tent with one another and consistent with their own traditions. It must provide infor-
mation to the product stakehol ders - operators, users, managers, marketing, customers,
etc. in formsthat they can understand. It is essential that there be rigor in the systems
information and automated transformation to the tools of the other disciplines and
product stakeholders. Thiswill require rigorous process and information models for
systems engineering to be followed by the development of integrated environments.

Semi-automated Search of the System Design Space

Both systems engineering and mechanical engineering share the need to find near
optimal solutionsto complex problems. Mechanical engineering often deals with
complex part boundaries and must perform complex analyses that involve stress, tem-
perature distribution, materials properties, and part fatigue. The solution of such prob-
lems has traditionally required the iterative solution of the analysis using separate
sophisticated finite element tools for each of the disciplines - thermal, stress, etc. In
recent years it has been possible to integrate such tool setsinto an environment. Asso-
ciated with the environment is a set of search tools combining analytical, rule based,
and heuristic optimization techniques (Ashley 1992). An engineer prescribes theini-

Perform Trade-Off Analysis

tial part shape and boundary conditions. He prescribes rules for conducting a design
space search and for modifying the part boundary based on search results. He then
monitors the alternative part shapes and effectiveness factors like cost, weight, reli-
ability as produced by the analysis by the environment. The engineer does a maxi-
mum of thinking and exploration and a minimum of manual labor.

Project, # Parameter svaried Mgnual Autqmated
Time Time
Aircraft Engine Preliminary Design, 100 | 10 Weeks | 1 week
parameters
Molecular structure design, 150 parame- | 1 week 1/2 day
ters

Cooling Fan Design, 18 parameters var- 8 weeks 1/2 day

ied

DC Motor Design, 70 parameters 2 weeks 1/4 day

Power Supply Design, 35 parameters 3 weeks 10 hours

Nuclear Fuel Lattice Design, Solution 1 week 2 days
space ~ 1010

Aerodynamic and Mechanical Design of 12t0 24 2to4
Turbine Blades, 700 parameters and 36 months weeks
different engineering codes (tools)

Table 5: Comparison of Manual and Automated Search for System Solution

The capture of system designsin executable modelsin an integrated tool set is
anecessary prerequisite for any automated search capability. The use of COTS prod-
ucts, of reusable components and of hew components with defined properties and
behavior means that semi-automated generation of system design alternatives and
their effectivenessis possible. The payoff in reduced cost of development and intime
to market islarge. Today this remains aresearch problem, avision, which can only be
approached by first achieving rigorous capture of details for the engineering process
and for products, and by creating integrated tool environments.

95 Exercises

1. Develop astructure diagram for measurement. Include information describing how
the measurement is taken.

2. Describe the relationship between effectiveness measure equations to cost func-

213

Perform Trade-Off Analysis

tions. See Figure 9-2., Information Model for Perform Trade-off Analysis on page
209

3. Consider two tools used in design: the first atext editor and the second a diagram-
ming tool. What problems are used when the tools are used together.

4. Give an example of three or more tools which were designed to work together.
What features enable them to work together?

5. Select adisplay technique which highlights the differences between Architectures 1
and 2 in Table 6., Two Architectures.

Architecture 1l Architecture 2
102 654 3 90 511 5
14 876 3 26 934 1
44 521 2 56 634 1
8 783 1 20 945 1
65 981 5 53 546 4
80 501 3 68 782 3
21 619 4 33 682 3
11 789 3 24 833 2
38 838 1 50 934 4
weight Fed gze weight speed Sze

Table 6: Two Architectures

6. Wouldthedisplay used in question 5 work if there were hundreds of valuesfor each
architecture?

214

Perform Trade-Off Analysis

9.6 References

Ashley, Steven, Engenious explores the design space, Mechanica Engineering, Vol
114, pp 49, February 1992

Clausing, Don P. 1994. Total Quality Development. ASME Press

Epperson, Roy E. 1994. Integration strategies and technologies for computer-assisted
system engineering environments. Fourth Annual International Symposium
National Council on Systems Engineering Vol. |, 913-920, San Jose, CA.,
August 1994

Ghassemi, K., Conway, E.and Hines, J. System modeling through parametric spread-
sheet analysis. Fourth Annual International Symposium National Council on
Systems Engineering Vol. |, 433-439, San Jose, CA., August 1994

Norris, Guy. 1995. Boeing's seventh wonder. | EEE Spectrum. October: 20-23.

215

Perform Trade-Off Analysis

216

Create Build and Test Plan

10

Create Build and Test Plan

10.1 What Core Step 6 Is

Core Step 6 isthe creation of a plan for how the subject system shall be built. It takes
into account realities of time to market and needed competitive features, available
resource for implementation, technical risk, timerisk, schedule risk, procurement
times, subcontracting, the involvement of partners, test and validation. The planis
based on the engineering information that describes the chosen design or architecture
emerging from core step 5, Perform Trade-off Analysis. A detailed description of sys-
tems engineering planning with useful examples and lists has been published, (Blan-
chard and Fabrycky 1990)

The development of the plan includes both management and technical issues. It
must schedule the work such that results are obtained when needed and resourceis
applied when needed, management issues. The results scheduled are outputs of the
technical work which require technical knowledge both for their identification and
for realistic estimates of effort for their development, technical issues. Both manage-
ment and engineering need to contribute to Core Step 6. It is a step in the core techni-
cal process because it paced by and requires the outputs from the preceding core
steps. Development of the next tier of the system needs to proceed with the manage-
ment and technical information from the build and test plan from the tier above.

The build and test plan is developed for the subject of interest at each tier of
development. The engineering team may be working at the context tier where the
subject of interest is the business using the product. They may be working at system
tier where the subject of interest is the product. They may be working at the sub-sys-
tem tier where the subjects of interest are the magjor segments of the product. A build
and test plan is created at each tier.

At each tier there are time-to-market issues and risk issues. At each tier there
may be adiscovery of aneeded capability not within the scope or competence of the
organization or of an unanticipated business opportunity that requires the cooperation
of another business. At each tier there may be a discovery of items which need to be
procured or developed by a subcontractor. As the program moves through the devel-
opment phases, the build and test plan is refined to encompass the increasing amounts
of detail needed for the increasing number of subsystems and components.

217

Create Build and Test Plan

There are test issues at each tier which are fully resolved up front by the model-
ing of the core technical process. The models produced by the core technical steps
produce the excitation scenarios and product response threads that are needed for val-
idation and test. At the context tier the modeling specifies the test excitations and
product responses that will validate that the product works in the business. At the sys-
tem tier the modeling specifies the excitations and responses that must be met by the
product segments. When modeling is applied to the development, both validation and
test begin at the beginning of the effort and are integral with the system development.
Thisrelationship makesiit straightforward to include design-for-test into the devel op-
ment and to create aregression test suite for use at each tier of development. The build
and test plan shows the schedule for builds and for testing. It shows the interconnec-
tion between the engineering that creates behavior and structure models, and the
actual incorporation of the behavior information into atest suite.

The schedule for builds may be based on several different considerations. The
plan may schedule building the smallest components, and then combining them into
larger and larger assemblies until the system is complete and validated. For very large
systemswith long development times, the schedule may call for partial builds of many
components and subsystems so that portions of the system may be assembled, vali-
dated early for particular response threads, and even applied in the field by selected
usersto try out critically important system features. These choices are driven by busi-
ness realities. They may result in incremental release of functionality to the market-
place, amulti-generational product plan.

Early builds of particular components can be executed for early assessment, or to
reduce risks. Thisisaform of prototyping controlled by a defined process and path.

10.2 Creating a Plan

218

The creation of aplan involves the specification of a set of tasks, the ordering of the
tasks, the inputs/outputs for each task, a selection among existing resources to do the
work, assignment of tasks to resources, and time and performance conditionsto be
met (especially cost). Thisis the problem of creating a system. The problem of creat-
ing aplan is the same as for any other system: product development, process devel op-
ment, or business re-engineering. (Wymore 1993). It has the same complexity, NP-
Complete, as other system developments (Chapman and Rosenblit 1995). Automate
computation of the optimal plan islimited by this complexity. Heuristics and human
guidance must often be used to develop a sound plan.

Simple plans for small projects often involve only modest resource constraints,
few or no aternative paths, and a need for completion within a specified reasonable
time. Such plans can be devel oped readily with software that displays the critical path
through the plan, slack times for the resources, and resource utilization.

Create Build and Test Plan

The plansfor large complex systems involve multiple constraints, time limits
that are difficult to meet, severe resource limits, and acomplex set of aternative paths
needed for mitigation of identified risks. Such plans require considerable iteration
and effort to find an acceptable solution. They can be developed with the available
planning tools mentioned above with some difficulty and iteration or with the core
technical process and systems engineering tools. Systems engineering tools have not
traditionally provided support for scheduling. They are likely to lack automated
response to queries like “what is the critical path”.

The development of such complex plansis eased when they are produced itera-
tively as described here. High level schedules and decisions are made as early as pos-
sible. These are refined and adjusted as more technical detail about the systemis
developed. This practical approach is often heuristic, using tools and agorithmic
techniques as an aid.

10.2.1 Network Scheduling Approaches

Network approaches to planning consider the project plan to be an ordered set of
independent tasks which may be represented as a network. The ordering operations
include the precedence of tasks, concurrency of tasks when severa follow a proceed-
ing task, and iteration. Any set of successive tasks through the plan is considered to
be a path (corresponds to a response thread). Time estimates for the tasks are associ-
ated with each task. The time for all paths is computed and the path with the longest
timeisnoted. It isthe critical path. The critical path limits when the project will be
completed. A reverse computation is then performed for al other paths, and the slack
timeisfound for each task. Resource utilization is shown.

These approaches and the supporting tools may or may not include provision for
representing alternative branching in the network in addition to and distinct from con-
currency. Such alternatives are vital when risk and its remediation are considered. For
risk remediation an alternative set of tasksis defined that begin a new direction for
work if ahigh risk part of the development does not show sufficient progress within a
prescribed time or resource expenditure.

Program Evaluation and Review Technique (PERT)

PERT is one of the algorithmic techniques which treats the plan like a network. It
incorporates uncertainty in the time estimates into the analysis. Thisis done by
assigning optimistic, likely, and pessimistic times in the estimates for completion of
each task. Mean and standard deviation are estimated for completion of the project
and for each task. Slack times are computed. Algorithmic solutions and tools to sup-
port them exist for PERT.

219

Create Build and Test Plan

Critical Path Method (CPM)

CPM deals with issues of finite resource and modification of resource assignments.
Thetasks on the critical path become candidates for increase of resource. Infieldslike
the construction industry this may be accomplished with premium payment for finish-
ing tasks early. CPM supports the allocation of resource to control completion time.
Algorithmic solutions and tools to support them exist for CPM.

10.2.2 Resource Allocation

In engineering and in research it is sometimes the case that the time limiting tasksin
the critical path require special talent that islimited in availability. It may or may not
be possible to increase resource for particular tasks. Sometimes the cost increase of
special talent must be balanced against the increased technical risk if the resourceis
not added. A critical talent may have to be shared across more than one program. Task
precedence may be coupled to available talent and cost. The assumption of task inde-
pendence that underlies many of the algorithmic approaches may not be valid in prac-
tical situations

Time may be only one of several optimization criteria; development cost, inclu-
sion of a particular partner, or risk may be as or more important. There then exist sev-
eral effectiveness measures for optimization of the plan. Thisisthe general system
problem of resource allocation for which heuristic methods are used rather than algo-
rithmic approaches. The core technical steps provide such a process.

10.3 Behavior Model for Core Step 6

220

Figure 10-1., FFBD View of Core Sep 6, describes the steps taken to createaplanin
terminology like that used in scheduling and planning. The objectsto be used in plan-
ning are the resources, primarily people. Aninitial concurrent step, 6.1, isto develop a
resource profile of the kinds of talent needed and the available resource in useful
classes. Thisis astructure model. Another concurrent step 6.2, isto develop the tasks
to be performed. The third concurrent task, 6.3, isto devel op precedence rel ationships
among the tasks. Thismay & so involve definition of alternative paths aswell as prece-
dence needed for purposes like risk remediation. The result of tasks 6.2 and 6.3 is
equivalent to the Functional Flow Block Diagram view of the behavior modeled by
the plan.

The next three concurrent steps complete the behavior, map it to objects, and
assign time performance attributes. Step 6.4 assigns the Resources to Tasks. Thisis
identical to mapping functionsto objects. Step 6.5 adds milestones to the plan. The
milestones are outputs from the tasks. Their inclusion, with the tasks and precedence
relationships, constitutes an executable behavior. In step 6.6 the Task Durations are
added. This allows the behavior to be executed and generate time lines and slack
times.

Create Build and Test Plan

Frequently the next step taken is to examine the work loads assigned to the peo-
pleto seeif the loads are balanced. Some people may have excessive work to do and
others may betoo lightly loaded. Step 6.7 examines the loading of resources. If the
work loads are not level, the planning loops back to reassignment of resources,
adjustment of milestones, reassignment of task durations. This loop continues until
the resources and tasks are commensurate. When the loads on peopl e are balanced the
plan can be evaluated for other purposes.

Unsatisfactory
6.1 6.4 6.8
Develo - Assi Execute to
Resour(?e B Res%%?(r:]es] Assess Slack,
Profile to WBS Tasks Not level Critical Path

‘[><} 5é] f 6.5 = 6.7 6.9 =
—*{AND Develop =A@» Develop (| =XaMINE L p{ AND Assess {@
WEB2 . Milestones L oad of Eg fties

Resources| Level

6.3 6.6 6.10
Develop | | L] Assign | | Assess | |
Precedence Tas Build & Test
Relationships Durations Requirements
Satisfactory
6
Create 6.11
Build and Publish —»
Test Plan Plan
Core Step 6

Figure 10-1. FFBD View of Core Step 6

In step 6.8 the plan is executed as abehavior. Slack times are established and the
critical path through the plan is established. If the slack times are small, the planis
satisfactory so far astimeis concerned. If the slack times are large, the plan is unsat-
isfactory and resources and tasks must be readjusted. Concurrently step 6.9 assesses
the business realities which include risk, time to market, funding rate, competition,
and validation of progress. The plan must mitigate identified risks with alternative
paths and resource. It must get product to market in the available window, and meet
competitive product featuresin that time frame. The rate of expenditure must match
funding rates. The schedule must include deliverablesto validate progress as the
work proceeds. Task 6.10 assesses the plan for incremental builds of product for early
validation and for periodic release of product to customers. Thisis an iterative

221

Create Build and Test Plan

10.4

222

sequential approach to development of a series of plans and performing trade-off
based on the criteria of steps 6.8, 6.9 and 6.10. The loop back to the beginning of Fig-
ure 10-1., FFBD View of Core Sep 6 generates additional plans until one that is near
optimal isfound.

Information Model for Core Step 6

Figure 10-2., Information Model for Core Sep 6 describes the information needed in
this step. The subject system is built from a set of components which are assembled,
tested and validated to show that the desired emergent behavior has been attained. Val-
idation must be done at the level of full integration because the properties of the sys-
tem depend upon the interactions of the components in both linear and non-linear
ways.

The Sequential Build and Test Plan orders the building and testing of the compo-
nents. The order of building depends upon and accounts for a variety of Business
Redlities. These realities may be time-to market, funding rate, risk, competition, or
need for early validation of progress. Any or al of these realities may be important.
They constitute the optimization criteria or effectiveness measures for the creation of
the plan.

The risk may be cost risk, schedule risk, or technical risk or any combination of
the three. Therisk is associated with the individual components, whether they will be
available and work properly within scheduled cost and time. Therisk isrecorded in
models as an attribute of the components, but the risks need to be assessed for their
importance to the success/failure of the system as awhole. They cannot be simply
summed for the system, but must be assigned weights depending upon their impor-
tance. Thereis no technigue for measuring risk directly, like weight or height. Rather
risk values and weights may be estimated by experienced engineers and managers
assigned the responsibility, or they may be estimated by survey of an informed group
of people using statistically valid techniques (Saaty 1983). The importance of risk in
planning depends upon the important aspects of the application, captured in the effec-
tiveness measures, particularly for technical risk. If the effectiveness measuresinclude
performance properties like availability, safety, or security, then the risks associated
with these properties of the system will be critically important.

Much of the planning work is based on estimates of the total size or cost of the
development. Techniques and software exist for creating a historic basis of estimate
and for estimating project cost and resource needs, PRICE Models from Lockheed-
Martin and COCOMO Models, (Boehm 1981), (Thusen and Fabrycky 1989).

Validation of progressis accomplished by establishing that the response of
thingsis correct. The system or component is specified, designed, or implemented
properly if the responses to excitation are the needed responses. Thisis a matter of
evaluating complete response threads through the system or of the portion of the
threads for a particular component.

Create Build and Test Plan

Components assembled, Subject
Risk tested, System
validated Attributes
ordersthe %ggcﬁ
build & behavior
- monitored test of
Traackl ng by
an ‘ .
Reporting Se(_quentl a accounts for Business
Plan
allocates <>
Resource Milestone Time Cost
Schedule Schedule
Work Work Parts List
assignedto | Package Breakdown (aggregation

Structure of objects)
| | | | A\

Timeto Funding | Risk | |Competition Validation
Market Rate

Risk [establishes | Technical | | Scheduld | Cost
Survey Risk Risk Risk

Figure 10-2. Information Model for Core Step 6

Tracking and reporting compares the plan against the time, cost, resource, and
milestones for the completion of things, against validated progress based on response
characteristics. Do the things do what was intended. The work breakdown structure
definesthe tasks to be performed and these tasks are assigned to resources (people) as
work packages. It isimportant that the work breakdown structure and the work pack-
ages correspond to the actual parts tree emerging form the project, rather than a con-
tractual parts tree which has changed substantially during the project.

223

Create Build and Test Plan

10.5 A Check-off List for Planning Plan

Although the planning work involves systems engineering management heavily, it is
important that it be driven by both the technical realities and the business'management
realities. These realities may be in sharp conflict at times and must be resolved. A
check off list representative of planning is included here at the end of the chapter
because of the importance of technical input to planning. Itisvital to take into account
al of the engineering results by modifying plans whenever trade-off analysisresultsin
an accepted design or architecture for the system or a component.

224

A Check-off List

Plan based on the design or architecture information emerging from core step 5,
Perform Trade-off Analysis

Demands an understanding of:

» The Systems Engineering Process

» Specification to suppliers

* Specification to other engineering disciplines

» A process for handling discoveries/change

» The project tasks: top down for deliverables & resources, bottom up for fea-
sibility

Definition of WBS plan tasks

* |dentify tasks

* Create sub-tasks

» Determine sub-task flow

Sub-task interdependency

» Create Pert-type diagram, CPM diagram, or Behavior Model

* Create decision basis, issue and issue resol ution rational e notes, (Blanchard
and Fabrycky 1990)

Determine sub-task resource profile
Identify work environment needs

» Work space

» Tools

» Training

Estimate manpower needs of tasks
» Person hours

» Labor category

» Experience

Create Build and Test Plan

Assign resources to tasks

» Define responsibilities associated with tasks
» Document
Assign sub-task start/stop times based on:

 Interdependency

» Schedule negotiated with informed engineers and management
» Resource availability

Develop and insert milestones into plan

Insert a hierarchy of milestones

» Major project deliverable milestones

o Top level review milestones

» Finegrain progress and quality review milestones at engineering level to
find unknown unknown'’s early

Level resources and iterate until satisfactory

Analyze plan according to criteria below

» Elimination of negative variance

* Reduction of slack time

» Optimization for cost effectiveness

» Optimization of time to delivery using critical path

» Optimization to account for all effectiveness measures, iterative and heuris-
tic

* Adjust plan to funding rate

* Inclusion of tasks to mitigate risk

* Inclusion of tasks for test and validation tied to excitation and response
models

 Partition of project output for successive release as needed for plan conver-
gence or market needs

» Definition of tasks and precedences for early validation based on partial
builds

Iterate to make plan converge

* Introduce combinations/concurrence/resource changes as needed to meet
plan criteria:
Tailor Company Process and Specification Standards

225

Create Build and Test Plan

» Collect relevant process and specification documentation

» Company standards (Purpose is for reuse of best practice, not enforce extra
work)
» Contractual standards (Negotiate to keep work lean)
» Applicable government standards (safety, environment, 1SO, etc.)
* Review for internal consistency and removal of all unnecessary work
» Remove inconsistencies and any unnecessary work
» Record issues and rationale for decisions
» Document or store results
» Generate Task Plan and Review for Approval with Appropriate Authority and
the Contributing Engineers
» Cite plan objectives
* ldentify plan products
» Fuse any preceding plan results

10.6 Exercises

226

1
2.

List the elements of a build and test plan

Describe the relationship of abuild and test plan for an entire system to the plan for
one of its components.

Develop a context diagram for the system which creates build and test plans.

Develop a structure diagram for the system which creates build and test plans. Map
the behavior of Figure 10-1., FFBD View of Core Sep 6 on page 221 to this struc-
ture.

Create an overall systems engineering plan for getting a new model of pocket knife
conceived, designed, and to market. Include atime schedule that is based on awork
breakdown structure. Show milestones for parts, part assembly, the full knife,
progress reviews to validate progress, and cost to milestone.

a. ldentify what isto be reviewed.

b. Assign resources to work packages that will result in the work being per-
formed.

c. Show time to market and funding rate limits met by the plan.
d. Assume low cost competition from overseas, and assess risks.

Identify three tools which are commercially available to aid in the development of
plans. Do these tools cover the functions needed in planning? Do they integrate
with system developments tasks?

Create Build and Test Plan

7. ldentify 10 risksthat every plan faces.

10.7 References
Blanchard, BF and Fabrycky, W. 1990. Systems Engineering and Analysis, Second
Edition. Englewood Cliffs, N.J.: Prentice Hall.
Boehm, Barry W. 1981. Software Engineering Economics, Englewood, N.J.: Pren-
tice-Hall

Chapman, William L. and Rozenblit, Jerzy. 1995. Complexity of the system design
problem. 1995 Inter national Symposium and Workshop on Systems Engineering
of Computer Based Systems. Tucson, Arizona. 51-57. IEEE#95TH8053

Saaty, Thomas L. 1983. Priority setting in complex problems, |EEE Trans. on Engr.
Management. EM-30, 140-155.

Thusen, GJ. and Fabrycky, W.J. 1989. Engineering Economy, Englewood Cliffs,
N.J.: Prentice-Hall

Wymore, A.W. 1993. Model-Based Systems Engineering. Boca Raton: CRC Press.

227

Create Build and Test Plan

228

11.1 What Concept Analysis Is

Concept Anaysisisthe study of the business which will use the subject system. The
study establishes what features the subject system should have by analyzing the value
of different featuresto the business, to its owners and to users of the system. Thisis

shown in Figure 11-1., Tiers of Analysis and Decomposition/Synthesis.

Concept Analysis

11

Concept Analysis

Component Tier

Collection of
s Analysis of analyzes | gy nesses using
Domain Tier Subject System
Decomposition ?
uses . analyzes Business using
Analysis of }
Concept Tier Subject System
Corf;r 'Licelllcd uses Andlysis of analyzes Subject System
System Tier ﬁ
uses : analyzes Sub-systems of
Analysis of Subject System
? Sub-system
Synthesis
— Analysis of analyzes | components

Figure11-1. Tiersof Analysisand Decomposition/Synthesis

229

Concept Analysis

Thetiers of analysis, domain analysis through component analysis, apply the
same core technical process to different objectsin the developmental part tree that
extends from components to domains or collections of businesses. The flow of the
analyses may be bottom to top, synthesis; or top to bottom, decomposition; or a com-
bination of the two.

At any tier, the analysis can terminate for part of the system and a specification
may be produced for business partners or suppliers. In the domain and concept tiers
businesses may be discovered which are necessary for product success, but are consid-
ered to be outside the business arena of the company devel oping the product. At the
lower tiers, entire subsystems or particular components may be specified for external
development or as a purchased subsystem or component from a supplier.

The subject system studied in concept analysis and the other tiers of analysis
may be any thing: a product, a process, a business, aplan, etc. They all havein com-
mon:; a set of criteriafor what is most important, a behavior, a set of parts to build
them, and design/architecture alternatives in how the behavior is allocated among the
alternative parts which are selected for the structure. The similarities among product,
process, business and plan may not be apparent because of different choices of com-
mon words used to describe the modeling items which are common to them all. Table

7., Modeling Items, associates afew of the commonly used words with modeling

items.

Modding Items Product Process Business Plan
Parts that do People, compo- People or equip- People, depart- Resources
things, (Objects) nentsor sub-sys- | ment ments, divisions,

tems facilities
What is done, Feature, response | Process step, pro- | Job, activity, task, | Task, schedule
(Behavior) duction rate responsiveness
Criteriafor Cost, needs, qual- | Cost, productiv- Cogt, efficiency, Cost schedule,
choice, (Effec- ity ity, quality quality, service time schedule,
tiveness mea- resource utiliza-
sures) tion
Interconnection Design The process Model The plan
of parts and total
system perfor-
mance (Design/
architecture)

230

Table 7: Modeling Items

Concept Analysis

11.2 Applying the Core Technical Process to Concept Analysis

This chapter focuses on how to apply the core technical processto concept analysis. It
does this with a simple exampl e problem which uses a product as the subject system,
but could have used a process, a business or a plan. The example problem chosen is
an automated teller machine, ATM. Solutions to representative parts of the ATM
problem are described in this book to keep the discussion reasonably compact.

The ATM product was selected to be small, easily understood by people through their
daily experiences, and to encompassinteresting aspects of modeling. It has been used
as an example in publications and other books. The approach used in this book is
unigue in going from concept through component specification with executable mod-
els as a systems problem. The approach is unique in using asingle repeated technical
core process, shown for reference in Figure 11-2., FFBD View for the System Engi-
neering Core Technical Process, applied first to bank context and then to the bank.

The approach eliminates unneeded modeling as much as possible to be efficient
and the example illustrates this balance of thorough modeling against rapidly elimi-
nating aternatives to maintain engineering productivity. Where decisions can be
made early and clearly regarding component choices for optimizing performance, this
is done. Where computation is required to decide among alternatives the more formal
trade-off step, Core Step 6., is applied. In the exampl e the decisions of both kinds are
noted.

Iterate to Find a Feasible Solution

2
Define |
Effectiveness

M easures No Feasible
Solution

1 3 5 6
= Assess —»@} Create |+ Perform | gl Creste |[p»

Available Behavior Trade-Off Feasible| Sequential
Information Model Anaysis Solution Build
& Test Plan
4
Create
— Structure [~
Model

Figure11-2. FFBD View for the System Engineering Core Technical Process

231

Concept Analysis

11.3 Core Steps Applied to the Context of the Bank with the ATM System

Concept analysisis applied to the business using the ATM system, rather than to the
ATM system itself, as shown in Figure 11-1., Tiers of Analysis and Decomposition/
Synthesis on page 229. That business is a bank. Each of the seven steps as applied to
the bank will beillustrated for concept analysis. The goal isto establish the concept
for the ATM system based on value to the bank when it usesthe ATM’s in place of its
present tellers and their manual entry of transactions.

11.3.1 Assess Available Information

232

The available information is taken from a problem statement that was written for soft-
ware engineering development. Since we are considering the total ATM system we
expect that arange of system related problems that need to be corrected in the avail-
able information will be found. The available information is taken from a problem
statement in (Rumbaugh et al. 1991, 151) Substitutions to replace the word software
with system names are inserted, italicized and in brackets.

Initial Information for an Automated Teller Machine System

“Design the software [an automated teller machine system] to support a computerized
banking network including both human cashiers and automated teller machines
(ATM’s) to be shared by a consortium of banks. Each bank providesits own computer
to maintain its own accounts and processes transactions against them. Cashier stations
are owned by the individual banks and communicate directly with their own bank’s
computers. Human cashiers enter account and transaction data. Automatic teller
machines communicate with a central computer which clears transactions with the
appropriate banks. An automatic teller machine accepts a cash card, interacts with the
user, communicates with the central system to carry out the transaction, dispenses
cash, and prints receipts. The system requires appropriate record keeping and security
systems. The system must handle concurrent access to the same account correctly. The
banks will provide their own software for their own computers; you are to design [the
ATM system] the software for the ATM’s and the network. The cost of the shared sys-
tem will be apportioned to the banks according to the number of bank customers with
acash card.”

The usual situation isinitial information that is partially complete, inconsistent
in level of detail, partly requirements, partly design, and partly operations concept.
Much of the information may be not be directly verifiable, some of it may even be
false or misleading. Modifications to the initial information are produced in thisfirst
core step. Each of the modifications must be documented and tracked. They must be
agreed to be dl of the interested stakeholders. The art of systems engineering starts at
this step. No methodology can tell an engineer what questions need to asked about the
system. For this education and experience are the guides. The best systems engineers
learn how to ask the correct guestions while avoiding unnecessary complexity that can
arise from rote dedication to a methodol ogy.

Concept Analysis

The subsequent modeling process discovers additional problems and suggests

their correction. The sentencesin theinitial information are numbered below. Modi-
fied statements are shown as bulleted sentences and comments about them are
dashed.

1

4.

“Design the software [an automated teller machine system] to support a com-
puterized banking network including both human cashiers and automated teller
machines (ATM’s) to be shared by a consortium of banks.”

The automated teller machine system shall replace interactions between bank
tellers and bank customers with interactions between the ATM system and cus-
tomers.

» Itisnot yet known which existing transactions shall be replaced.

 [tisnot yet known how much of the network belongsin the ATM system or
if thismay vary with different bank customers for the ATM system.

Each bank provides its own computer to maintain its own accounts and pro-
cesses transactions against them.

This statement contains design information about banks which may not repre-
sent the banking world. Thiswill need to be substantiated or modified to match
the real world situation. In considering the context and boundaries of the sys-
tem we can choose to make this a requirement or consider the possibility that
the computers are part of the system or perhaps that there is athird party that
owns and operates the computers.

Banks might use an external service like First Data Corporation to track their
transactions and provide both internal information to the bank and monthly
reports to bank customers.

Cashier stations are owned by the individual banks and communicate directly
with their own bank’s computers.

Cashier stations are owned by the individual banks.
Cashier stations communicate directly with their own bank’s computers.

» Sentence 3. has been broken into two independent statements.

» Thetwo statements describe the structure of banks, again this needsto be
verified. In the absence of verification the two statements will be accepted
as generally true of banks not yet using ATM systems.

Human cashiers enter account and transaction data.
Human cashiers enter account and transaction data.

* The statement describes the structure of banks.

e The statement is accepted as generally true of banks not yet using ATM
systems.

233

Concept Analysis

5. Automatic teller machines communicate with a central computer which clears
transactions with the appropriate banks.

» The automated teller machine system shall communicate the transactions it
captures to the banks.

» The automated teller machine system shall execute only those transactions for
which validation is received from the banks.

» Automated teller machines may mean only the hardware/software that inter-
faces with bank customers.

» Automated teller machines may be only a subsystem or component of the
ATM system.

» Theinterface with banksis not yet clear.

e For aviable product lineit may be necessary to configure ATM subsystems
for particular banks, tailored to what the bank already owns or |eases.

» “Clearstransactions’ is ambiguous. It can mean validating a submitted
transaction so that the ATM system can complete the transaction or it can
mean communicating the transaction to the bank without a validation proce-
dure in place. The second bullet assumes it means validation, and the proce-
dure for validation is not identified. The procedure could vary among
different banks using the ATM system.

6. Anautomatic teller machine accepts a cash card, interacts with the user, com-
muni cates with the central system to carry out the transaction, dispenses cash,
and prints receipts.

» The automated teller machine system shall accept transactions after reading a
cash card and receiving avalid pin number from a system user.

» The automated teller machine system shall dispense cash only for those cash
transactions for which validation is received from the banks.

» The automated teller machine system shall print receipts for the transactions
executed.

* Thewords “interacts with the user” are redundant with 1. above.

» Thewords “communicates with the centra system to carry out the transac-
tion” are redundant with 5. above.

7. The system requires appropriate record keeping and security systems.
» The ATM system shall maintain correct records.

» The ATM system shall generate correct reports.

* The ATM system shall keep information secure.

* The ATM system shall keep money secure.

234

Concept Analysis

The systern must handle concurrent access to the same account correctly.

Simultaneous or overlapping requests to the ATM system for transactions on
the same account shall be adjudicated at the point in the network where simul-
taneity or overlap is detected.

e “Simultaneous’ is ambiguous here. It can mean either that two requests are
made at exactly the sametime, or that the duration of two user sessions on
the same account overlap.

» Simultaneous or overlapping reguests on the same account can be entered
into ATM machines on different networks on different continents. Only a
central facility serving that bank account can know that they are simulta-
neous and follow an appropriate procedure.

The banks will provide their own software for their own computers; you areto

design [the ATM system] the software for the ATM’s and the network.

Design the ATM system.
Begin the design work with concept analysis.

* These areinstructions.

10. The cost of the shared system will be apportioned to the banks according to the

number of bank customers with a cash card.

The ATM system shall operate at maximum benefit/total-cost to the banks it
Serves.

» Sentence 10. deals primarily with how the banks using the ATM system are
to be billed, which may best be tailored for different bank customers of the
ATM system vendor.

» Total cost/benefit to the bank will be a selection factor for banks choosing
an ATM system vendor.

Requirements Extracted from the Initial Information
The bullets above are collected here and numbered. They do not comprise acomplete
set of requirements. Many are not verifiable. They apply at different tiers of hierar-
chy. Some of the bullets are not requirements. Some are statements about the banks as
they exist or are instructions about the problem.

Requirements for the ATM system

11.1 The automated teller machine system shall replace interactions between
bank tellers and bank customers with interactions between the ATM system
and customers.

11.2 The automated teller machine system shall communicate the transactions
it capturesto the banks.

235

Concept Analysis

» 11.3 The automated teller machine system shall accept transactions after read-
ing a cash card and receiving avalid pin number from a system user.

» 11.4 The automated teller machine system shall execute only those transactions
for which validation is received from the bank.

» 11.5 The automated teller machine system shall dispense cash only for those
cash transactions for which validation is received from the bank.

» 11.6 The automated teller machine system shall print receipts for the transac-
tions executed.

» 11.7 The ATM system shall maintain correct records.
e 11.8 The ATM system shall generate correct reports.
* 11.9 The ATM system shall keep information secure.
e 11.10 The ATM system shall keep money secure.

* 11.11 The ATM system shall operate at maximum benefit/total- cost to the
banksit serves.

Statements about the Structure of Banks
» BL1. Cashier stations are owned by the individual banks.

e B2. Cashier stations communicate directly with their own bank’s computers.
» B3. Human cashiers enter account and transaction data.

» B4. Simultaneous or overlapping reguests to the ATM system for transactions
on the same account shall be adjudicated at the point in the network where
simultaneity or overlap is detected.

Instructions about the Problem
* |1. Design the ATM system.

» 12. Begin the design work with concept analysis.

11.3.2 The Three Concurrent Core Steps, 2, 3, and 4

The next three core steps: Define Effectiveness Measures, Create Behavior Modd,
and Create Structure Model are concurrent. Because text in abook is read sequentially
the full concurrency cannot be shown in the written form of this example. It is often
useful to consider the effectiveness measures very early because they provide guid-
ance in thinking about the models. In the development of large systems the problem
will likely be apportioned among teams such that work is proceeding in parallel.

236

Concept Analysis

Effectiveness Measures for the Bank
Thiswork, like the assessment of theinitial information relies on the experience and
creative thinking of the developers. The issue here is what are the statements about
the ATM system that will make it succeed or fail when brought to banks in competi-
tion with other ATM systems. A first selection is made from the results of analyzing
theinitial information. The selection is made by applying criteria: (1.) “If thiswere
true the bank would buy our system! or (2.)"If this were not true the bank would
reject our system!”

* 11.7 The ATM system shall maintain correct records.

» 11.8 The ATM system shall generate correct reports.
e 11.9 The ATM system shall keep information secure.
* 11.10 The ATM system shall keep money secure.

* 11.11 The ATM system shall operate at maximum benefit/total-cost to the
banksit serves.

Statements 11.7 through 11.10 are chosen based on question 2. Statement 11.11
is chosen based on question 1. Bankers will choose the system that gives them the
maximum benefit/cost. The problem now faced by the designer is whether thisisa
compl ete set of effectiveness measures. It is helpful at this point to think about the
structure of the context of a bank.

Context Structure for Bank
At this point a simple context for bank is needed. The functions to be performed and
the important attributes can be added later. Figure 11-3., Initial Sructure of Bank
Context shows an initial structure for the context of bank.

uses o Commercial
Customer

Individual
Customer

has accounts and has accounts and
makes transactions makes transactions

Figure 11-3. Initial Structure of Bank Context

237

Concept Analysis

238

The effectiveness measures have not taken into account the customers. Both
individual customers and commercial customers have accounts with the bank and
make transactions there with tellers. When the ATM system isinstalled, they may
aternatively use the ATM system. It must be so attractive to them that they will use it
in preference to the tellers. Otherwise the system will fail in the marketplace.

e Customers shal prefer to use the ATM system over the bank tellers.

Effectiveness Measures for the Bank

Aninitial set of six effectiveness measures, EM’s, can now be collected for the ATM
system. If others are found during modeling they will have to be added.

EM1. The ATM system shall maintain correct records.
EM2. The ATM system shall generate correct reports.
EM3. The ATM system shall keep information secure.
EM4. The ATM system shall keep money secure.

EMS5. The ATM system shall operate at maximum benefit/total-cost to the
banksit serves.

6. EMG6. Customers shall prefer to use the ATM system over the bank tellers.

Inspection of them shows that the first four deal with what the ATM must do. With
further analysis they can help with the analysis of the ATM system. Effectiveness
measures EM 5. and EM6. deal with value to the bank and value to the customer. They
are of direct importance to the concept analysis.

To proceed further it is necessary to define the customer, the behavior of the cus-
tomer, and the structure of the bank. Only the individual customer will be considered
to keep the example short.

ag > v bdp P

Define the Structure for Individual Customer

Figure 11-4., Sructurefor Individual Customer shows the association of the customer,
a person, with the accounts, part of the bank, which the customer has opened.

Concept Analysis

Individual Customer Account
Account type has | Customer name
Account number 1+ 14| Account number

Make transactions

A

| l l |

Checking Savings Loan Investment
Account Account Account Account

Figure 11-4. Sructurefor Individual Customer

If there are other kinds of accounts they can be added. This is enough information to
help define the behavior of the individual customer.

Context Behavior, the Individual Customer
When the behavior of the customer is captured, the major excitations for the system
are obtained. They will be used not only in context analysis, but in defining compo-
nents and in testing and validating the system and its components. Figure 11-5., View
of Behavior of Individual Customer, shows many alternative pathsin the behavior of
the customer. Alternative paths are annotated with estimated probabilities of their
usage. The customer may go to either the bank or to an ATM. Once there the cus-
tomer may perform avariety of transactions. The FFBD captures what the customer
does and it raises two questions:

1. Why would the customer prefer the ATM system?

2. Which of the transactions are the heaviest load on the bank tellers and can be
automated by the ATM system.

Preference for the ATM System
Customers are likely to prefer the ATM if it isin asafe place, has shorter lines than
the bank, is closer to home and to work, and is easy to use. Safe place is a matter of
finding locations, and will depend upon conditionsin particular communities. Easy to
use is a human machine interface design issue that will be considered as components
aredesigned. It isimportant, but premature in concept analysis. Shorter lines and
closer to home are a matter of the number of machines put in place.

If one putsin place many more ATM machines than existing tellers, then the
lines will be shorter

239

Concept Analysis

If one putsin place many more machines than branch bank offices, then the
machineswill be closer to customers than branch offices with tellers. If the ATM'sare
to be athird of the distance to abranch bank on average, then there must be about 3x3
=9 ATM machines for each branch office. The effectiveness measures and behaviors
are beginning to provide refined information about the structure of the bank and the

ATM system.
.0006 Apply for
Account
21 Depositin
Checking
.36 Withdraw
from Checking
.07 Depositin
Goto Savi
1 ings
0 Bank v
.15 i N
— @ @ 097 Withdraw 4@9 p Continue
from Savings or Stop
0.9 Goto
' ATM .0006 Borrow
Money '
Leave
.07 Make Loan Site >
Payment
.07 Make
Investment
07 Sdll
Investment
Figure 11-5. View of Behavior of Individual Customer

Which Transactions to Automate
Applying for an account can be automated with some difficulty but resultsin loss of a
manager directly assessing the applicants, and loss of an opportunity to sell additional
services. Deposits and withdrawal s from savings and checking are simple to automate.
Repaying loans is often done in person or by mail. Making and selling investmentsis
often conducted by phone or persona computer. The frequency of occurrence of these

240

Concept Analysis

transactions with tellers can be obtained accurately and quantitatively from bank
records. Transactions on checking and savings accounts are most frequent, with cash
withdraw from checking the highest. These frequencies of occurrence, after normal-
ization, are the probabilities for choosing a branch of the large “or” in Figure 11-5.,
View of Behavior of Individual Customer, representative values of probability are
shown on each branch. If loans and investments are conducted dominantly by mail or
phone, then automating savings and checking transactions can move 90% of the
transaction from tellersto ATM’s - provided the ATM's are attractive to use. Proba-
bilities of going to the ATM or to branch banks are most reliable when measured by
observing bank customers choices with an installed system. In advance of aninstalled
system they are best obtained by survey of the bank customers.

Since there is no important trade-off for the context, we model the bank.

11.4 Core Steps Applied to the Bank with the ATM System
We accept the models already produced as available information, core step 4.1.

11.4.1 Structure of the Bank with the System, Core Step 4.5

Figure 11-6., Sructure of the Bank, models the important details we need to under-
stand the benefit to a national bank. Unneeded details have been left out of the figure.

241

Concept Analysis

Only the gross structure and the tellers are shown. The numbers shown are estimates
for alarge bank. Numbers for a particular bank or national averages could be used.
The national bank is supported by about 10 regional banks. Each of these is supported
by about 20 local banks, and for each local bank there are about 10 branch banks. The
dominant number of tellers work in the approximately 2000 branch banks. It isin the
cost in these branches that the ATM system will have its mgjor impact, though it will
benefit all of the banks. It isthe branch banks that are located in the community to pro-
vide nearby service to bank customers whose deposits are loaned by the bank to gen-

provides
service

Individual o USES ¢

Customer

has accounts
and makes
transactions

10+

uses o Commercial

has accounts
and makes
transactions

| ~10]

~200 I

~ 2000 |

~ 8000 Tellers
~ 20,000 ATM's

National Regional Local Branch
Bank Bank Bank Bank
support support support has
2to8,av. 4
Note: ~ 2000 Branch Banks Teller

Figure 11-6. Sructure of the Bank

erate income.

Classes of Bank.

242

A classification for branch bank and bank attributesis givenin Figure 11-7.,

Concept Analysis

Bank

Investment
Building Investment
Building Area
Land Investment
Land Area
Investment Cost
Operating Cost
Heating/cooling
Electricity
Maintenance
Taxes

Total Cost

Perform Bank Business

A

Bank

National

Branch Bank

Regional L ocal
Bank Bank

Figure 11-7. Classesof Bank

Investment $750K

Building Investment $500K
Building Area 10,000 sq ft
Land Investment $250K
Land Area 160,000 sq ft
Investment Cost $37.5 K/yr
Operating Cost $17.5K/yr
Heating/cooling $1.5K /yr
Electricity $4K/yr
Maintenance $2K/yr

Taxes $10K /yr

Total Branch Cost $50K /yr

Perform Branch Business

The attributes of the subclasses are inherited from bank. The values shown for
branch bank are estimated average values for atypical branch bank. These values

would be different for a particular branch bank (an instance) in a particular bank.That

more precise data is available from the bank.

A more detailed model of Teller isgivenin Figure 11-8., The Teller.

243

Concept Analysis

Teller
Burdened salary: $40,000

Execute Transactions
Figure11-8. TheTeller

The important attribute for teller for this analysisis the burdened salary.

11.4.2 Effectiveness Measure For Bank with the System, Core Step 2

244

The two effectiveness measures identified as of greatest importance in this concept
analysis are:
» EMG6: Customers shall prefer to usethe ATM system over the bank tellers’

» EMSb5: The ATM system shall operate at maximum benefit/total-cost to the
banksit serves.

Effectiveness Measure EM 6. was used to generate some structural numbers about the
number of ATM machines per branch office and per teller. That information and the
structure and behavior modeling that has been done let us write equations for the ben-
efit for the ATM system.

Total Benefit = Teller Cost Reduction + Branch Office Cost Reduction
At least 3 of 4 tellers can be replaced with about 20,000 ATM machines.
Teller Cost Reduction = # Branch Banks x 3 x burdened salary of Teller.
Teller Cost Reduction = 2000 x 3 x $40,000 = $240 M.

At least 75% of branch offices can be moved into leased space of 500 sg. ft. in
popular locations like supermarkets for about $25,000 /yr. These numbers can be
refined in particular communities and with particular businesses

Branch Office Cost Reduction = 0.75 x # Branch Offices x (Total Branch Cost -
$25,000)

Branch Office Cost Reduction = $37.5M
Total Benefit = $280M /yr. or $14,000 per yr. and installed ATM Machine

For abank with an annual earnings of about 2% of deposits, this saving repre-
sents an equivalent increase in deposits of about $14B. The benefit isvery large. To
warrant the investment, the cost of the ATM system needs to be recovered in about
two years. The selling price of the system should be less than about $560M or $28,000
per ATM machine on the system. If the system can be created with a combined build,
install, operate cost of about $14,000 per ATM machine, then there is an excellent
business here.

11.4.3 Behavior of the Bank with the ATM System, Core Step 3
In this exampl e the behavior of the bank is not changed quantitatively. Rather some of

the activity in the bank is moved from tellers to the ATM system.

Concept Analysis

Deposit in

Checking

Withdraw
from Checking

Deposit in

Savings

Goto
ATM

Withdraw
from Savings

Make Loan

Payment

Borrow

Continue
or Stop

Money

Make

Leave
ATM

Investment

Sell

Investment

Figure 11-9. View of Behavior of Individual Customer Using the ATM System

Figure 11-9., View of Behavior of Individual Customer Using the ATM System,
shows the excitations to which the ATM system must respond. The behavior model
for the system is equivalent to a set of written functional requirements.

We aready know that some of the excitations are unlikely. Since we have not
fully evaluated their benefit, we represent all of the excitations and responses. The
ATM system stayson at al times, ready to respond to a user. Consequently its behav-
ior will look like an infinite loop. When the customer stops and so notifies the ATM
system, the system goes back to itsinitial function of presenting to the customer the

start instructions.

Figure 11-10., View of Behavior of the ATM System, shows the responses and

loops.

245

Concept Analysis

Execute Deposit
in Checking

|| Execute Withdraw
from Checking

Execute Deposit
in Savings Sop

y

T : Receive
rovide: at| (097 Execute Withdraw 4@9—> Continue or Stop
Instructions A from Savings

Instruction

Execute Loan Continue
Payment

Execute Borrow
Money

Execute Make
Investment

Execute Sdll
Investment

Figure 11-10. View of Behavior of the ATM Sys-

The eight functionsin Figure 11-10., View of Behavior of the ATM System, are only
top level names. Each of them must be decomposed and refined into compl ete descrip-
tions of exactly how the system responds to every input from the user and from the
banks. This detail isleft until the system and the components are designed. At this
point in the development it isimportant to establish the responses required and the
benefit of each response. To get at the benefitsit is necessary to have values for all of
the attributes used in the effectiveness measures and requirements. in this problem
they have been estimated during the model development. The job of getting accurate
valuesis part of trade-off analysis.

11.4.4 Trade-off Analysis of the Bank with the ATM System, Core Step 5

246

The preceding analysis has shown large potential payoff to the bank. It has captured
bank behavior and structure, ATM system behavior the criteria for trade-off and the
eguations. It has provided an upper limit for the cost of producing, installing, and
maintaining the system.

The benefit/cost needs to be maximized, EM 5., to:

Concept Analysis

* Provide the bank the largest benefit/cost ratio
» Be competitive with other suppliers
» Have asatisfactory profit margin for the business of supplying ATM systems

Figure 11-5., View of Behavior of Individual Customer on page 240, identifies
nine different features that may be embodied in an ATM machine. Thelist is repre-
sentative of useful features but is not exhaustive. These nine features can be com-
bined in 503 different ways. It is this explosion in the numbers of possibilities that
makes a gorithmic solution of system problems impractical. Creative engineering,
heuristics, are used to prune the large solution space. The probabilitiesin the figure
show which features have the largest benefit individually. Which transactions the
bank automate should automate follows from the benefits shown in Table 8., Feature
Benefits to Bank. Features 1., 2., 3., 4., and 6. should be automated initially. The deci-
sion is made without considering all 503 options.

Feature Bendfit per Ingalled ATM Machine
1. Deposit in Checking $1680
2. Withdraw from Checking $2880
3. Deposit in Savings $560
4. Withdraw from Savings $1200
5. Borrow Money $4.80
6. Make Loan Payment $560
7. Make Investment (1) $560
8. Sdll Investment (1) $560

Table 8; Feature Benefits to Bank

Some of the features require similar kinds of support. Withdrawing money from any
kind of account requires amoney dispenser, amoney supply, and periodic resupply of
money. Depositsto any kind of account require asafe repository for the deposit, and a
daily pick-up of the deposited material. Thisinformation suggests how to packagethe
features in different kinds of ATM machines that interface with the public.lt is the
analysis of the system tier which follows concept analysis that establishes the cost of
these alternatives and the structure of the ATM System.

Figure 11-11., Kinds of ATM Machines, classifies the kinds of machinesthat are
likely to emerge from concept analysis based on the modeling completed so far.

247

Concept Analysis

248

ATM Machine
Total Withdraw Cost

Execute Withdraw form Checking
Execute Withdraw from Savings

A

I |

Money Machine Deposit Machine
Total Deposit Cost
Execute Deposit to Checking

Execute Deposit to Savings
Execute Make Loan Payment

Bank Transaction Machine
Total Transactions Cost

Execute Apply for Account
Execute Borrow Money
Execute Make Investment
Execute Sell Investment
Execute Cash Savings Bonds
Execute Wire Funds

Execute Get Cashier Check
Execute Get Money Order
Execute Get Investment Data

Figure 11-11. Kindsof ATM Machines

Attributes and functions are inherited and not listed a second time in the sub-
classes. the money machine and deposit machines are two obvious candidate products.
Their relative merits depend upon their relative costs. The transaction machine is an
advanced work station for banking that may become viable someday, but is a poor
candidate for an early release of product. Analysis of the system tier can uncover other
important types with very different costs.

Note that the computation machinery for trade-off was established in the earlier
modeling steps. In the trade-off analysis it is necessary to get adequate values for the
attributes. In this example that means going to banks to get their measured and
recorded data. That datais superior to engineering estimates such as those above. The
datawill vary from bank to bank and region to region. It may be important to get the
datafrom severa banksif the trade-off criteria do not provide wide margins for select-
ing product features.

Concept Analysis

Within the scope of systems engineering there are a multitude of computation
and simulation methods that are used to find attribute val ues when measured values
are unavailable. They simulate the performance and properties of physical and logical
things like cost, weight, reliability, power consumption, algorithmic complexity, con-
trol loop error, crack propagation, etc. Itisaresponsibility of the systems engineering
management process to ensure that the specialized engineering talent for thiswork is
available and applied when needed.

11.4.5 Create the Sequential Build and Test Plan, Core Step 6
The modeling through trade-off has established the bank context, the behavior of the
user, relevant bank structure, how the product changes the bank, behavior and
reguirements for the ATM system, and value to the bank. The next step isto decide
how to implement this opportunity. The modeling has identified potential business
relationships that are needed. In this example the bank may want to down size and
relocate branch offices into places like supermarkets. A vendor of ATM systems with
existing business relationships with national supermarkets can combine business re-
engineering consulting with the suppling of ATM systems. Thisis a matter of decid-
ing what business the vendor of the ATM system product will pursue. It istheissue of
how the vendor business will be implemented and what work must be done to make
that happen. The business implementation plans will differ depending upon the
choices made. If the choices made do not completely span the system solution, then
the products need to interface with the products of other companies, or partnerships
need to be created. One possible business choice follows:

Business scope:
1. Supply hardware and software for the capture and transmission of transactions
to acommunication network.

2. Lease communication facilities.
reguires implementation of business relation with communication companies
3. Build custom interfacesto the MIS system of the bank

Requires involvement with banks to define functionality and tailorable inter-
faces

4. Interface with a separate business that performs back end transaction process-
ing and reporting

Requires relationship with a company like First Data Corp.
5. Service ATM systems, repair, and resell ATM equipment.
Ensures a capability to maintain an available system

Provides a separate revenue source

249

Concept Analysis

Provides a path to continuing business in a saturated market for ATM’s

6. Consult to bankson installation of ATM systems and down-sizing branch
banks

Ensuresinternal bank procedures for security of information and funds.
Requires rel ationships with supermarket chains.
Maintains a presence with banks to get sales

The plan, constructed for the ATM system at concept level, schedulesimplemen-
tation, test, and validation tasks for:

» Creating relationships with banks, communication companies, transaction pro-
cessing companies, and supermarket chains.

» Performing analysis of the system tier on The ATM System with focus on sub-
systems for:

» Hardware and software for capture and transmission of transactions.
e Hardware and software for diagnostics, field service, field installation, sys-
tem management, and validation of performance.
» Hardware and software for interfaces with communications, banks, and
transaction processing.
* Management of the whole ATM system business
» Recruiting, training, housing, and equipping personnel.

The plan is not just about engineering, but about implementation of the ATM
system business and validation of the work as it proceeds. At thislevel of understand-
ing the plan will lack detail for implementation. Much of that detail is developed inthe
next tier of development, analysis of the system tier, described in the next chapter.

11.5 Summary

Performing the systems engineering at any tier isan art of finding a near optimal solu-
tion while expending as little engineering resource as possible. The modeling needsto
uncover the subtle low cost, high performance solutions. The modeling needs to help
the engineer quickly reject most of the multitude of non-optimal solutionsin the
search for the low cost high performance solution that is near optimal.

11.6 Exercises

1. Writeaset of requirements statements equivalent to Figure 11-10., View of Behav-
ior of the ATM System on page 246.

a. Tracethese requirementsto any of the eleven, 11.1 - 11.1, from Section 11.3.1,
Assess Available Information on page 232, that were identified by analyzing the
initial information and are parents for the ones you have written.

250

Concept Analysis

b. Create any needed implied requirements. These are requirements which did
not exist anywherein the initial information and are not derived from any of
them. They have no parents.

2. Create temporal requirements for the responses of the system shown in Figure 11-
10., View of Behavior of the ATM System on page 246.

3. Assign time values to the functions in Figure 11-10., View of Behavior of the ATM
System on page 246, where that is sensible.

4. Give examples of asystem and its parts at each of the tiers of design from domain
down to component.

5. Give examples of questions which are asked and answered at each level of design
for a power generation business.

6. Briefly analyze the newspaper business at the concept level. Develop structure and
FFBD diagrams. List all assumed available information.
11.7 References

Rumbaugh, James; Michael Blaha, William J. Premerlani, Frederick Eddy and Will-
iam Lorensen 1991. Object-Oriented Modeling and Design, Englewood Cliffs,
N.J.: Prentice Hall

251

Concept Analysis

252

System Analysis

12

System Analysis

12.1 What System Analysis Is

System analysisisthe study of the subject system which will be used by a business or
businesses. The subject system may be a product, a process, a businessto be re-engi-
neered, or aplan. System analysisis preceded by concept analysis which establishes
the value of features of the subject system to the business, to its owners, and to users
of the system. Based on the value of the features, concept analysis establishes the top
level behavior of the subject system. That behavior captured in amodel is equivalent
to text requirements for the system. The results of concept analysis are the initial
information for system analysis.

System analysis applies the steps of the core technical processto fully definethe
context of the subject system and then to decompose the system into it subsystems.
The context of each sub-system isfully defined in its structure and in the excitations
to the sub-system. The behavior of the sub-system in response to the excitations is
defined. That behavior captured in amodel is equivalent to text requirements for the
sub-system.

This chapter describes system analysis by continuing the example of the ATM
system. A complete development of all of the requirements and models for al of the
sub-systemsistoo large for inclusion in abook and is repetitive as an example. A rep-
resentative sub-system will be analyzed in this chapter. It will be selected to represent
interesting aspects of modeling systems and to be familiar to many readers.

12.2 Core Steps Applied to the Context of the ATM System

Substantial information about the ATM system is developed in concept analysis and
passed on to system analysis. Often the context description is not complete, asin this
example. The core technical steps are applied to fully establish the context of the
ATM system and to create the plan details for decomposing the system into sub-sys-
tems.

253

System Analysis

12.2.1 Assess Available Information, Core Step 1
When a system is developed with concept analysis by one organization and system
analysis by a different organization under contract, it is essential to thoroughly assess
all of the available information. When this proceeds by legal contract, the require-
ments for the system are usually received as alarge set of text statements rather than
in executable models with accompanying text.

When alarge system is developed by a single organization, for example an auto-
mobile by an automaker, the information produced by concept analysis can be passed
on to system analysis in executable models with accompanying text. For large sys-
tems, the information will pass from one group to another group of people. Thorough
assessment of the models received asinitial information is essential.

In this small example, the models from Chapter 11 are accepted as satisfactory
initial information. The work proceeds to the next three concurrent steps.

12.2.2 The Three Concurrent Core Steps, 2, 3, and 4

These three steps are concurrent. The step to begin with depends upon the problem
under study. If effectiveness measures and structure are well documented and behav-
ior isless complete, one may begin with analysis of behavior. In actual engineering
situations the engineer will move focus among the three steps as needed. For this
example we repeat the effectiveness measures developed in Chapter 11. and go on to
analysis of the structure of the ATM system context, which is not yet well defined.
When the structure of the context is more complete, we can select the portions that we
have space to explore in this example.

12.2.3 Effectiveness Measure For Bank with the System, Core Step 2

Theinitial set of six effectiveness measures, EM’s, for the ATM system are repeated
here. If others are found during modeling they will have to be added.

1. EML. The ATM system shall maintain correct records.
2. EMZ2. The ATM system shall generate correct reports.
3. EM3. The ATM system shall keep information secure.
4. EMA4. The ATM system shall keep money secure.
5

. EM5. The ATM system shall operate at maximum benefit/total-cost to the
banksit serves.

EM6. Customers shall prefer to use the ATM system over the bank tellers.

IS

254

System Analysis

12.2.4 Structure of the Context of the ATM System, Core Step 5

Aninitial context for the ATM system was shown in Figure 11-3., Initial Srructure of
Bank Context on page 237, and was adequate for analysis of value to the bank and to
customers. It is missing a number of objects which will be essential for system analy-
sis. effectiveness measures EM 3 and EM 4 describe security. In the context there must
be a Thief who will steal money, a Spoofer who will alter information or commit
fraud, and organizations which will apprehend Thieves and Spoofers. Figure 12-1.,
Context of ATM System, shows the associations among these objects.

connects to

Long Distance |g cONNectsto Loca
Communications 1+| Communications connectsto

l
L eased makes queries & receives validation
Communications

uses| 1t

Security notifies .
robs| System

catches | Thief

prosecutes|

Justice
ATM o System
Customer | USEs

sends transactions

buys reports
detects

has accounts and
makes transaction:

Bank

Serves 1.

1+ N [~10] _~200[_~2000-N]

Transaction Supermarket | | Nationa Regional Local Branch
Processing Org.| | Branch Bank Bank Bank Bank Bank

support Support support

Bank MIS Transaction
Processing Processing Co.

Figure 12-1. Context of ATM System

Business choices were made during Concept Analysis as to what the product
would be and what parts of the ATM system would be leased or obtained through
partnerships. Communication facilities are to be leased. Transaction processing and

255

System Analysis

256

report generation is to be performed by the MIS departments of Banks or by transac-
tion processing companieslike First Data Corp. Branch Banks may be down sized into
locations like supermarkets. The ATM vendor provides consulting to banks on bank
procedures and down sizing. If such business choices are not made during concept
analysis these objects must still be carried through the system analysis. In that case
they may be viewed as either external systemsin the context or subsystems of the
ATM system with a deferred business issue identified and traced to them.

According to the figure, the ATM Customer has accounts with the bank and
makes transactions. The Customer uses the ATM System which the Bank has bought.
The ATM machine used may be local to the customers bank or located anywhere in
the world.

The ATM System uses L eased Communications to transmit and receive informa-
tion. The activity begins at an ATM machine anywhere in the world. The combination
of communication local and long distance networks used is hot known, the networks
handle the addresses properly. Validation of the transaction is dealt with by queriesto
an appropriate site or sites in the Bank where the bank database resides. The Leased
Communication network also connects to the Transaction Processing Organizations
which process transactions and prepare reports for Banks and ATM customers. There
are two kinds of these organizations to consider: those that are Bank MIS Processing
organizations and those that are Transaction Processing Companies. Interfaces to both
kinds will be necessary. Several subsystems of the ATM system will likely be
involved with the communication networks. It is premature to describe the ATM sys-
tem decomposition and those associations. They are deferred until context definition
is complete and the System Analysis turns to the structure of the ATM system itself.

A Spoofer, thisis the established name for someone who breaks into computer
systems, defrauds the ATM system. Thisis detected by the Bank which reportsit to
the Justice System which prosecutes the Spoofer. Note that this portion of the context
is compact. Its analysis leads to distributed computer security issues which are com-
plex and which have a profound impact on the computer, communications and soft-
ware details of the ATM system. Security is accomplished by design of the computer-
communication system, (Schiller 1994) and (Khanna 1993) and by use of encryption
(Beth 1995) and (Simmons 1992). The computer-communication system design must
aso take into account issues of availability (Birman and van Renesse 1996). These
issues are best |eft to the expert detail designers. Only requirements for security and
availability are specified by the system analysis.

A Thief robs one or more customers or robs an ATM machine. The ATM system
notifies Security and Security catches the Thief. Thisisacritically important part of
the context to deal with if the system is to be acceptable to bank customers and to
banks. It is expressed in effectiveness measure EM4.

System Analysis

The Thief portion of the ATM system context is readily understood without spe-
cialized knowledge, and it leads to interesting modeling results. Accordingly, the
remainder of this chapter will analyze this part of the context diagram. It is often very
useful to partition large projects among teams based on loosely coupled portions of
the context diagram, and then combine the results. In this example the partitioning is

used to reduce the size of the example.

12.2.5 Effectiveness Measure for the ATM System Context, Core Step 2
The relevant effectiveness measure is EM4: the ATM system shall keep money
secure. Though true and important, it cannot be verified and is unsatisfactory until
further analysis creates derived requirements which are verifiable. The analysis con-
tinues by developing the behavior of the Thief and the ATM Customer.

12.2.6 Behavior of the Thief in the Context of the ATM System, Core Step 3
Their are two kinds of Thief, as shown in Figure 12-2., Kinds of Thief, muggers and
cabinet crackers. Each has a characteristic behavior.

Thief

I

Cabinet
Mugger Cracker

Figure 12-2. Kindsof Thief

A plausible behavior for the cabinet cracker is shown in Figure 12-3., Behavior
of Cabinet Cracker. We have labeled the four paths, or scenarios, through this behav-

10r.

257

System Analysis

Visual
Sighting /
\ ;
Break Open
ey ™Door
Locate a at unti
I Machine| ™ No One

Present 3 -
@r Pickal /o Take
Lock r Money
— -

NG

Flee |_p

Fnreak @ E Cut Cabinet 1 @

Open

Crack | g \
Cabinet ﬁaf o 1
(a7

Figure 12-3. Behavior of Cabinet Cracker

A plausible behavior for the Mugger is shown in Figure Figure 12-4., View of
Behavior of Mugger. There are two labeled paths through this behavior.

Mug Customer
5 ™| With Withdrawn—
Money
See Customer
—» Approaching 4>®D @D—» Flee [
Machine
Mug And
6 | Take Over
Machine
Figure 12-4. View of Behavior of Mugger

Thereisaanother object in the Thief portion of the context diagram, the ATM
Customer, whose behavior causes excitations of the ATM system. Figure 12-5., View
of Behavior of ATM Customer, is a plausible description.

258

System Analysis

Figure 12-5. View of Behavior of ATM Customer

_] Goto - Read Swipe - Enter Select
ATM Instructions Card Password Transaction
A
Enter
Deposit »| Make Continue
. Deposit
Information
@ @ Take | | Quitor |Quit
Receipt Continue
Enter
Withdraw > -I{/laé(r?
Information ey

Thisanalysis of context has been partitioned to the Thief part of the context.
The effectiveness measure, the structure and the associated behaviors have been
described. At this point no trade-off between ATM system and external objectsin the
context has been found. The analysis passes over core steps 5 and 6 to examine the
responses and the structure of the ATM system. This will lead to the definition of

some of the subsystems of the ATM system.

12.3 Core Steps Applied to the ATM System

We accept the models created up to this point and pass on to the three concurrent core
steps. Thefirst one we apply is Create the Structure Model, to create afirst try at the

structure of the ATM system.

12.3.1 Structure of the ATM System, Core Step 5

This step begins with afirst try at listing the sub-systems of the ATM system in Fig-
ure 12-6., Sub-systems of ATM System. The objects included will very likely be mod-

ified as a complete analysis of the ATM system proceeds.

259

System Analysis

ATM
System
0
| | |
ATM Bank Bank MIS Transaction
Machine | | |Consulting | Interface Pr ocessor Qzlr\lﬂa%ﬁgq:
Interface 9
Lo e Pasom
and Router [nstallation & Manage Personnel
Field Service Train Personnel

Sell Product
Collect Transactions] Market
Establish Routing Install Equipment Receive Bills
Acquire Network Diagnose Faults Pay Bills
Send Transaction Repair Equipment Send Invoices
Send Queries Maintain ATM Cash Collect Payments
Receive Response Collect Deposits Manage Information
Send Response Buy Used Equipment Manage Engineering
Perform Self-check Sell Repaired Equipment Perform Engineering

Schedule Services M anage Manufacturi ng

Perform Manufacturing

Procure Components
Figure 12-6. Sub-systemsof ATM System

First guesses are shown for the functions needed in ATM System Management,
Installation and Field Service, and Transaction Concentrator and Router. The Transac-
tion Concentrator and Router collects transactions and queries over leased local lines
from local ATM machines. It routes them to the appropriate network to get them to
local and distant banks and to the transaction processing organizations. It routes trans-
action validation back to the ATM machines. These guesses must be examined by
carefully developing the related behaviors and trying all ocations onto the objects. At
this point the listing gives an idea of what the tentative sub-systems may do.

This example is concentrating on the Thief portion of the ATM system context.
The sub-system involved isthe ATM Machine. For this example, then, we concentrate
on the responses of the ATM machine and its needed attributes as a result of the exci-
tations defined earlier. Thisis asmall part of the total problem.

12.3.2 Behavior of the ATM System, Core Step 3

One possible view of the behavior of the ATM System is shown in Figure 12-7., View
of System Behavior.

260

System Analysis

Y

Respond to Execute
Customer [™ Transaction ||

\d

- | Repair
~ | System

Maintain
| System

Install Enhance
- System (And) > System

Keep
> Money
Secure

Dispose
of System

Fg\
Y

Keep
® Information
Secure

»| Manage
System

Figure 12-7. View of System Behavior

It isthe behavior of the ATM Machine sub-system that is being studied because
we have limited the scope of the example. This sub-system isinteresting because the
analysisinvolves responses and attributes to satisfy the ATM Customer, and another
set of responses and attributes to thwart the Thief.

Responses and Attributes to Thwart the Thief

There are four scenarios for the Cabinet Cracker, Figure 12-3., Behavior of Cabinet
Cracker, and two scenarios for the Mugger, Figure 12-4., View of Behavior of Mug-
ger. We will consider them one by one.

261

System Analysis

Scenario 1

The Cabinet Cracker carries off the ATM Machine. This can be thwarted by making
the machine heavy, by bolting it to the floor, and by assuring alocation so that lifting
equipment like atow truck or fork lift cannot get closeto it or get purchase onit. The
lifting force can be specified after consultation with security experts. Aninitial esti-
mated budget of 4000 Ibs. is made here as sufficient to prevent people from removing
the ATM machine.

ATM Machine

Min. Removing Force: 4000 Ibs.
Protected Location: T
Cost:

Figure 12-8. ATM Machine

The attribute values are the arguments of equations associated with performance
requirements and are captured in Figure 12-8., ATM Machine.

1. Requirement: The ATM Machine shall be secured such that a 4000 |b. forceis
required to removeit.

*Requirement type: Non-temporal Performance

«Attribute: Minimum Removing Force

*Associated equation: Removing force = Min Removing Force, 4000 Ib.
*Traceability: The requirement traces to effectiveness measure EM4.
*Validation: Validated by measurement

2. Requirement: The ATM Machine shall be located such that lifting equi pment
cannot get close or get a purchase onit.

*Requirement type: Functional

Attribute: Protected L ocation True or False

*Associated equation: Protected Location = True

*Traceability: The requirement traces to effectiveness measure EM4.
*Validation: Validated by inspection

Unfortunately these derived requirements will increase cost.

262

System Analysis

Scenario 2
The cabinet cracker cuts open the ATM machine with atorch. This can be thwarted
with a heat sensor and an alarm to the security force. If on the average it takes the
security force fifteen minutes to respond, then the ATM cabinet must withstand cut-
ting with atorch for fifteen minutes.

3.

Requirement: The ATM machine shall sense heat.

*Requirement type: Functional

*Traceability: The requirement traces to effectiveness measure EM4.
*Validation: Validated by measurement

Requirement: The ATM machine shall send an alarm when the cabinet temper-
ature exceeds 300 degrees Fahrenheit locally

*Requirement type: Non-temporal Performance

*Attribute: Alarm Temperature 300 degrees F

*Traceability: The requirement traces to effectiveness measure EM4.
*Validation: Validated by measurement

Requirement: The ATM cabinet shall withstand cutting with an oxy-acetylene
torch for fifteen minutes or longer.

*Requirement type: Temporal Performance

*Attribute: Min. Cabinet Cutting Duration 15 minutes

*Traceability: The requirement traces to effectiveness measure EM4.
*Traceability: The time budget traces to function Cut Cabinet Open
*Validation: Validated by measurement

Scenario 3
The cabinet cracker picksthe lock. This can be thwarted by sensing the vibrations of
picking the lock with a sensor and an alarm to the security force.

6.

Requirement: The ATM cabinet shall withstand picking the lock by atrained
locksmith for fifteen minutes or longer.

*Requirement type: Temporal Performance

Attribute: Min. Lock Pick Duration 15 minutes

*Traceability: The requirement traces to effectiveness measure EM4.
*Traceability: The time budget traces to function Pick a Lock
*Validation: Validated by measurement

263

System Analysis

264

Scenario
The Cabinet cracker breaks open the door with clamps, drills, punches, or saws.

7.

Requirement: The ATM cabinet shall withstand breaking the door by atrained
locksmith for fifteen minutes or longer.

*Requirement type: Temporal Performance

Attribute: Min. Door Break Duration 15 minutes

*Traceability: The requirement traces to effectiveness measure EM4.
*Traceability: The time budget traces to function Break Open
*Validation: Validated by measurement

Scenarios 3, and 4

8.

Requirement: The ATM machine shall sense vibration.
*Requirement type: Functional

*Traceability: The requirement traces to effectiveness measure EM4.
*Validation: Validated by inspection

Requirement: The ATM machine shall send an alarm when the detected vibra-
tion level exceeds TBD.

*Requirement type: Non-temporal Performance

*Attribute: Alarm Vibration Level TBD

*Traceability: The requirement traces to effectiveness measure EM4.
*Validation: Validated by measurement

Scenarios 1,2,3, and 4
For al of the scenariosit is necessary to notify security. The alarm needs to occur
whether thieves attempt to cut the signal or to replace it with a generated signal.
10. Requirement: The ATM machine shall send atamper proof alarm to Security to

notify that a theft isin progress when heat or vibration is detected.
*Requirement type: Functional
*Traceability: The requirement traces to effectiveness measure EM4.
*Validation: Validated by measurement

The attributes and the functions devel oped are collected in the graphic descrip-

tion Figure 12-9., ATM Machine Revised.

System Analysis

ATM Machine

Min. Lifting Force: 4000 Ibs.

Protected Location: T

Alarm Temperature: 300 degrees F

Min. Cabinet Cutting Duration: 15 minutes
Min. Lock Pick Duration: 15 minutes

Min. Door Break Duration: 15 minutes
Alarm Vibration Level: TBD

Cost

Sense Heat
Sense Vibration
Send Alarm to Security

Figure 12-9. ATM Machine Revised

Though this specification for the ATM machine can be implemented, everything
added for security is contributing to cost. It is certainly a candidate for trade-off
against lower cost solutions or against accepting higher risk of theft.

Scenarios 5 and 6

These are the scenarios for the Mugger. For these scenarios the important effective-
ness measures are EM4. used above and EM6: customers shall prefer to use the ATM
system over the bank tellers. Customers will not use ATM machines unless they feel
safe from muggers. In these scenarios the Mugger sees an ATM customer using a
machine and either takes the withdrawn from her, or the Mugger takes over the
machine and withdraws money. In either case the ATM Customer is threatened with
violence and may be injured. Cameras and emergency buttons can be built into the
machines. However, these devices will only ensure that help arrives more quickly to
take the patron to ahospital. Thereis nothing that can be built into the ATM Machine
itself to prevent mugging.

12.3.3 Structure Implications of the Theft Scenarios, Core Step 4
The machines can be placed in safe locations which are know to be free of mugging
incidents. This suggests thinking about all of the possible kinds of secure locations.
Figure Figure 12-10., Classification of Secure Locations shows the result of such cre-
ative thinking. Modeling only captures the results of the thinking.

265

System Analysis

266

Location
(External
System)

Jj

Insecure Secure

A

No Cashier With Cashier With
Cash Present Cash Present

Figure 12-10. Classification of Secure L oca-

In the context of ATM system there are locations which can be used to house the ATM
machines and provide them with electric power and connection to communications.
Some locations are secure and some insecure. For any given location this can be estab-
lished by survey of people who are familiar with the locations. Among the secure
locations there are two very interesting kinds:

1. Locationsthat have acashier and cash present
2. Locations that do not have cash and a cashier present

If cash and a cashier are already present, then it is not necessary for the ATM
machine to dispense money. Instead it can dispense areceipt for which the cashier
givesthe ATM Customer the money. In some cities and areas there may be no loca
tions with these characteristics. In some cities and areas retail stores, drug stores and
convenience stores can serve this function.

This alternative is different kind of allocation of behavior than has been
described before in this example. It isan allocation of the function “ dispense money”
away from the ATM system and into the external objectsin the context. In Figure 11-
11., Kinds of ATM Machines on page 248, the assumption was made that all of the
ATM machines would dispense money withdrawn from either checking or savings
accounts. This alocation into the context totally relieves the ATM system for respon-
sibility for the physical security of the money and risk to the customer. It also drasti-
cally reduces the cost of the ATM machine which now does not need a money
dispenser, protection from theft, or arepository for deposits. Deposits can be left with
the cashier.

Many potential retail locations of this type are located close to the ATM custom-
ers and these retail ers benefit from customers with money in their stores at their cash
registers. For this solution to the system problem there are afew additional consider-

System Analysis

ations. It is necessary to print arandom number on the receipt and to display that
number at the register so that fraudulent receipts cannot be presented. It is necessary
to arrange for the transaction to be cancelled if the retail store is temporarily short of
funds and cannot honor the receipt. These restrictions can be readily incorporated into
the requirements and represented in the models. These considerations cause a redefi-
nition of the types of ATM Machines, shown in Figure 12-11., Kinds of ATM
Machines, Modified.

Store L ocation ATM Machine
Total Withdraw Cost
Read ATM Card
Supply Power Read Pin Number
Supply Communication Port Validate Transaction
Accept & Store Deposit Execute Withdraw form Checking
Dispense Money _ Execute Withdraw from Savings
Cancel Random No. @ Cashier Dispense Receipt
Cancel Transaction

Receipt Only Machine M oney Dispensing M aching
Total Receipt Cost Total Dispense Cost
Execute Deposit to Checking Theft Protected: Y/N, Cost
Execute Deposit to Savings Dispense Money

1+ | Execute Make Loan Payment
locatedin | Print Random No. on Receipt
Display No. @ Cashier

Cancel Transaction Zk
Bank Transaction Machine Money & Deposit Machine
Total Transactions Cost Total Dispense & Deposit Cost

Theft Protected: Y/N, Cost

Execute Apply for Account) -
Execute Bgﬁgw Money Execute Deposit to Checking
Execute Make Investment Execute Deposit to Savings
Execute Sall Investment Execute Make Loan ngment
Execute Cash Savings Bonds Accept & Store Deposits
Execute Wire Funds

Execute Get Cashier Check

Execute Get Money Order

Execute Get Investment Data

Figure 12-11. Kindsof ATM Machines, Modified

The parent class, ATM Machine, shows all the functions common to the ATM
machines and the cost of these capabilities.

267

System Analysis

The Money & Deposit Machine dispenses money and stores deposits. It may or
may not be protected for theft, depending on location. When these machines are
located inside bank |obbies they do not require the protection of machines located out-
side or in unsafe buildings.

The Receipt Only Machine provides all of the functions of the Money and
Deposit Machine because of the cooperative arrangement with the Store Location. An
element left unclear is whether the transport of deposits from store to bank will be
done by the ATM Installation and Field Service sub-system or by the Store when store
receipts are taken to the bank. That issue is flagged but not analyzed until Installation
and Field Service and associated behaviors are anayzed.

The Money Dispensing Machine does not have arepository for deposits. It may
or may not be protected from theft, depending on location.

The Bank Transaction Machine is a customer workstation for bank transactions
of all kinds. When a business like thisis starting, the Bank Transaction Machineisa
future release. Such releases often need atrial in abank to prove their effectiveness.
The cost effectivenessis not clear from the analysis of benefit to the bank. Widespread
introduction may await introduction and acceptance of electronic banking.

Clearly thisisaproduct line of ATM machines. The alternatives provide abasis
for consulting with banks not only on their internal procedures, but also on tailoring
the distribution of ATM machines and types to the communities and customer popul a
tions they serve. Ability to locate low cost Receipt Only Machines in cooperating
stores can be an asset for the ATM system vendor with appropriate business relation-
ships with store chains.

All of these results are the result of analyzing responses to the Thief. The
responses of the ATM machine to the ATM customer are described next.

12.3.4 Response of ATM Machine to ATM Customer

268

The behavior of the ATM Machine is aresponse to the behavior of the ATM Cus-
tomer, Figure 12-5., View of Behavior of ATM Customer. Within that response are
some issues that transcend the ATM Machine sub-system and the theft scenarios. The
ATM Machineisinvolved in the validation of the transactions to ensure that the card
and password are valid and that accounts have funds adequate for withdrawal. The
actual validation can take place in the ATM Machine or in aremote location. These
aternatives affect the amount of time the Customer must wait for validation, the
amount of use of communications, and the security of the information. Validation
involves the Spoofer and the Network portions of the context diagram. The validation
issues need to be examined from all of these perspectives. For brevity this example
will only consider the problem from the standpoint of the ATM Customer and the
ATM Machine, which are parts of the Theft portion of the context under study for the
example.

System Analysis

Figure 12-12., Behavior of ATM Machine, shows a plausible response to the

ATM Customer.
Card Display @ Display
Re-swipe Re-peat
Instruction Password
A A
Y bad _Y bad
- - - q | Display
__ | Initidize| Dlsplay_Start Read »| Vdidate |9o0d Password »| Capture
ATM Instructions Card Data Instruction Password
good
= .Requ&st R
uest eceive
| Account [| UGS on o Validation |
Validated & Account & Account
ves Information Information
Regquested
Informatio - bad
A@ >6n d) Vaidate |
Transaction
Display Capture Prompt Capt_u_re good
| Transaction —*| Transaction — Additional [—*|Additional —
Selection Selection Info Info
e
] Display Receive
;gg; ¢ Completion =t Completion | ?farggmetfon slop
P Information Choices
continue |
Figure 12-12. Behavior of ATM Machine

When the ATM machine isturned on it first Initializes. It then displays start
instructions for the Customer. When the Card is swiped by the Customer the ATM
Machine reads the card. It the reading produces good data, the behavior continues. If
the datais bad, the ATM machine displays a message to re-swipe the card. When
good datais obtained it prompts the user for password information. A password is
entered by the customer and captured. The password can be quickly checked locally

269

System Analysis

270

with a check sum if the card number and password have been properly established. If
the password is bad, the ATM Machine displays a repeat password message. If it is
good the behavior continues with two concurrent branches.

On the upper branch the ATM Machine requests information over the network
for password verification, card verification, and account balances. Therewill beatime
lag after which the requested information is received by the ATM Machine. During
thistime lag activity proceeds along the lower branch. The transaction selection isdis-
played to the customer. The customer sel ects a transaction type. The selection of trans-
action amount is displayed and the Customer inputs the amount chosen. The
overlapping of the two branches minimizes waiting time for the customer. Reguesting
and receiving the information needed concerning the card, password, and account bal-
ances in asingle burst minimizes both time delay and communication use. However,
for security reasons it may be undesirable to transmit account information back to the
ATM Machine.

When both branches are complete there is enough information to Validate the
transaction. If the transaction is approved the process continues. If not, it cycles back
to the front of the two branches to attempt to match atransaction against the accounts.

If the transaction was allowed, areceipt for the transaction is printed. If the
machineis of the Receipt Only type the receipt istaken to the cashier who matchesthe
printed random number against the displayed number at the register. The cashier pays
the withdrawn amount and enters the completion choices of completed and stop. The
ATM Machine signals a completed transaction to the system If the cashier is out of
cash and cannot honor the receipt, he enters not compl eted and stop. The transaction is
aborted and not recorded by the system.

If the ATM Machineis of the other types, then the ATM customer enters her
compl etion choices and may stop or continue with additional transactions. When fin-
ished, the stop command is entered and the ATM machine displays the start instruc-
tions.

The plausible behavior just described has considered only a few of the anoma-
lous conditions that can occur. Each step in the behavior needs to be examined for
desired behavior of the ATM machine under all possible conditions (Carson 1995).
For example, what happens at any step if the customer walks away from the machine?
Doesit time out and return to displaying start instructions. What happens at any point
if the ATM customer wants to quit or back up to a previous step?

Each of the steps requires further detailed design of the displays to be presented
and the datato be processed. These details are developed as the ATM Machineis bro-
ken into its components. There are three kinds of ATM machines to consider: Receipt
Only, Money Dispensing, and Money and Deposit machines. It would be useful to
develop them so that they share and reuse a maximum number of parts.

System Analysis

12.3.5 Structure of the ATM Machine and Related Objects, Core Step 5

The development of behaviors has introduced a number of additional objects
which are not a part of the ATM Machine, but are associated with it. Figure 12-13,,
Associations with ATM Machine, shows these associations Models like this figure
treat al of the objects on an equal footing in showing the relationships among them.
They are particularly useful in organizing information about the system because
information about each of these objects may be important to record. They are often
referred to as information models.

Bank International ATM
Network Network Network

connects
Bank

Computer

Network

reads/writes
Sores ATM Data iVes | SEnds
Bank .
Database Transactions
contains
has
Replies
ATM .
Customer ATM Machine receives
draws
gets | support
from
withdraws
Account

makes Deposit to |g__Stores Location
Account

reads . .

—0| Information Display %&

Figure 12-13. Associationswith ATM Machine

271

System Analysis

This representation asserts that the ATM customer has accounts, defines transac-
tions, uses an ATM card issued by the bank, entersinstructions, requests access with a
password, gets receipts, withdraws cash from an account, makes deposits to an
account, and reads information displays. It assertsthat the ATM System uses the
money supply provided by the bank, reads the ATM card, follows the instructions,
accepts or rejects the password, produces receipts, dispenses cash from an account,
stores deposits to an account, creates information displays, draws support from aloca
tion, receives replies, makes requests, captures transactions, and generates messages
describing the transactions.

The figure asserts that a network transports messages, receives requests, and
sends replies. Because we do not know the structure of the network, It asserts that
there are three inclusive classes of networks: ATM Network, International Network,
and Bank Network. The Bank Network connects to an appropriate bank computer
which reads and writes to a bank database which contains accounts in which are
recorded the account transactions. The bank database and also stores ATM data
including the information needed for validating card numbers and passwords. The
physical locations and structure of the computers, networks, and data storage media
arein general not known. Their identities and routing addresses are known or are
found by reading appropriate files.

Models such as this are very useful in defining all of the objects with which the
ATM Machine interfaces. When database engineers are organizing the information
that describes all of the objects in the system, the information models provide a basis
for organization of the data. When created with an executable notation, database
schema can be generated from the information models. Thisis one of the intimate
relationships between the detailed description of the system needed for specification
and database development.

This example has examined only one of the several subsystems of the ATM sys-
tem. Some of these other sub-systems, especialy Installation and Field Service will
interface with the ATM machines and have a major impact on their operating cost.
That information comes from study of the other sub-systems and can be included in
the models when it is available.

12.4 Exercises

272

1. Create abehavior for the ATM Machine in response to the scenarios for the Thief.
2. Create abehavior for the response of Security to an alarm from the ATM Machine.

3. Link the composite behavior of Thief with the behaviors of the ATM Machine and
Security. Create atime line for the interaction of the three objects.

4. Define abehavior for Instalation and Field Service that will:

a Install the machines

- 0o a 0 o

-«

System Analysis

Supply money to ATM Machines

Retrieve deposits from ATM Machines

Respond to out- of - service calls

Proactively test ATM Machines using remote diagnostics
Service broken ATM Machines

Repair and sell ATM Machines

Estimate the cost per machine for these services
Schedule installation and field service

5. Estimate the cost to provide each service

Make a rough estimate of the cost of manufacturing each of the three kinds of
ATM Machines. Add the cost of the services required for each kind of machine.

7. For alocal bank with twenty branches decide what numbers of the different kinds
of ATM machines you would distribute in the community. What assumptions do
you have to make?

8. Think of aset of rules or an algorithm for locating ATM machines.

9. Develop asystem level analysis of an electronic cash register.
10. What is the output of system level analysis? What questions does it answer?

12.5 References
Beth, Thomas. 1995. Confidential communication on the internet. Scientific Ameri-

can. Dec. 88-91

Birman, Kenneth P. and van Renesse, Robert. 1996. Software for reliable networks.

Scientific American. May. 64-69

Carson, Ronald S. 1995. A set theory model for anomaly handling in system require-

ments analysis. Fifth Annual International Symposium of the National Council
on Systems Engineering 1: 515-522.

Khanna, Raman. 1993. Distributed computing, |mplementation and management

strategies. Englewood Cliffs, N.J.: Prentice Hall

Schiller, Jeffrey I. 1994. Secure distributed computing. Scientific American. Nov. 72-

76

Simmons, Gusavus J. 1992. Contemporary Cryptology: Sate of the art and future

directions. |EEE Press

273

System Analysis

274

Sub-system Analysis

13

Sub-system Analysis

13.1 What Sub-system Analysis Is

Sub-system Analysisisthe study of the sub-systems of the subject system which will
be used by a business or businesses. The sub-system may have its own effectiveness
measures, design constraints, and architecture which differ from those of the system.
Sub-system Analysisis preceded by analysis of the system tier from which it receives
the context for each sub-system. The structure model of the context describes all of
the objects with interfaces to the sub-system. The behavior models for the context
describe the behaviors of all the objects with interfaces to the sub-system. A behavior
model for the sub-system describes how it responds to the excitations it receives from
the objectsin its context.

Sub-system Analysis applies the core technical stepsto review and validate the
context information received from analysis of the system tier. This review is needed
to find and correct errors and missing information in the models received. It is neces-
sary for large systems becauseit will decompose into six or more sub-systemswith an
engineering team assigned to each sub-system. These teams need to review and apply
their collective experience to refine the models devel oped by the analysis of the sys-
tem tier team. Since the sub-systems interact, the teams need to review with one
another the interactions among their subsystems.

When the context models have been corrected and accepted, each team applies
the core technical steps to its sub-system. Each sub-system is decomposed into its
components by allocating the behavior of the sub-system onto trial sets of compo-
nents. This process defines the context of the component statically and dynamically.
The behavior of each component is refined as a response to all of the excitations it
receives.

This chapter describes Sub-system Analysis by continuing the example of the
ATM system. A complete development of al of the requirements and models for all
of the sub-systemsistoo large for inclusion in abook and is repetitive as an example.
Analysis of the ATM Machine will be continue in this chapter. The analysis will be
carried to the specification of the components.

275

Sub-system Analysis

13.2 Core Steps Applied to the Context of the ATM Machine

Substantial information about the ATM machine was developed in analysis of the sys-
tem tier in Chapters 11 and 12. and is accepted for use here. However, only one part of
the system context was explored during analysis of the system tier so that the only
sub-system definitions and models that emerged were for the ATM Machine. Models
for the response of the ATM Machine to the Thief were |eft as an exercise for the
reader as was the behavior of Security. The impact of analysis of the Installation and
Field Service sub-system was left as an exercise. Models are presented here for
response to the Thief, behavior of Security, and impact of analysis of field service on
the ATM Machine. Thisis done without performing analysis or trade-off to optimize
the content of the models.

Overall View of System Behavior
Figure 13-1., View of System Behavior defines top level behavior.

\

Invite Execute
Transaction [™| Transaction

\i

| Repair
'Syegtem

_ | Maintain
= | System

Install Enhance
| System _>6r@' System

N
1 Mon
Secu%

Dispose
of System| ™

fg\
\;ﬁ

K
> In%pr)mation
Secure

»| Manage
Systen

Figure 13-1. View of System Behavior

276

Sub-system Analysis

Response to Thief

Figure 13-2., View of Response of ATM Machineto Thief, isaview of the ATM
Machine behavior in response to the Thief Scenarios. Details of the tamper proof
alarm signalling are contained in the function Send Alarm and require detailed

design.
(Heat),

Keep
Money [a%r;tse
Secure
Send
(Grd (and = 30
Sense
Noise

Figure 13-2. View of Response of ATM Machineto Thief

Impact of Installation and Field Service

Results are assumed here for the analysis of installation and field service without
going through analysis of the system tier and trade-off. They may or may not be near
optimal. The distribution of machineslocally is assumed to be:
» Three Money and Deposit Machines with alarms in the drive through outside
the Local Bank; and one outside each of two Branch Banks. Five total.

» OneMoney and Deposit Machine without alarm and protection inside the
Local Bank, the two Branch Banks, and the eight Supermarket Banks. Eleven
total.

» One hundred Receipt Only Machinesin 100 Convenient Store locations serv-
ing the local area. One hundred total.

With this distribution collection of deposits, supply of money, and supply of tape for
the printersis handled by regular bank personnel and convenient store personnel.
Installation and Field Service is organized regionally with responsibility for about
2000 machines for the 10 local banks in the region. Mean time between failures,
MTBF, is required to be:

* Receipt Only Machines, MTBF = 5 year/failure, 400 failures/yr. regionally

* Money and Deposit Machines, both kinds, MTBF = 1.0 year/failure. 150 fail-
ures/yr. regionally

277

Sub-system Analysis

The cash dispenser is expected to be both expensive and less reliable than many
of the other components, so MTBF isless for the Money and Deposit Machine than
for the Receipt Only Machine. The failures are evaluated with remote execution of
diagnostics. Failures of the Receipt Only Machine are serviced by having regular bank
personnel replace the entire unit and by initializing and validating its performance
remotely over the network. For each region two service persons handle the failures.
Such procedures limit field service personnel to about 20 persons for the system. Only
when the impact of a service structure such as this has been considered, can the oper-
ating cost of the different machines be ascertained. As the machine reliability goes up
the cost of servicing goes down but cost of manufacture goes up. A full trade-off of
theses alternativesisrequired in analysis of the system tier. The solution aboveis
applied in this chapter. It provides operating cost information for the ATM Machines
and sets goals for their MTBF and reliability. For athorough discussion of MTBF,
reliability, availability, and for specifying al reliability concerns a good text on that
subject should be consulted (Blanchard and Fabrycky 1990, Chapter 13).

13.3 Core Steps Applied to the ATM Machine

13.3.1 Effectiveness Measure for the ATM machine, Core Step 2

Theinitial set of six effectiveness measures, EM’s, for the ATM system are repeated
here. If others are found during modeling they will have to be added.

1. EML. The ATM system shall maintain correct records.

2. EM2. The ATM system shall generate correct reports. EM1. and EM 2. require
that the ATM Machine shall:

Interpret instructions correctly
Read cards correctly
Request information correctly
Interpret replies correctly
Validate passwords correctly
Validate transactions correctly
Reject bad data
Continue properly after receiving bad data
3. EM3. The ATM system shall keep information secure.

The analysis of the system tier to apply EM 3. to the ATM Machine has not been car-
ried out in the example. Thereisinsufficient information to apply EM3.

4. EMA4. The ATM system shall keep money secure. EM4. applies directly to the
ATM Machine

278

Sub-system Analysis

5. EMS5. The ATM system shall operate at maximum benefit/total-cost to the
banks it serves. Some guesses about Installation and Field Service have been
made to provide rough guidance in operating cost and ATM Machine MTBF.

6. EM®6. Customers shall prefer to usethe ATM system over the bank tellers.

Based on system considerations, machines have been located for customer conve-
nience. Locations have been selected to allay anxiety over personal safety. MTBF has
been made sufficiently long that a customer should experience no machines out of
order in more than ayear of using near by machines.

Ease of use and understanding must be designed into the ATM Machine. This
design work is an engineering discipline, generally called Design for Manability and
Human Factors Analysis. Good discussions of the discipline are available, (Blan-
chard and Fabrycky 1990, Chapter 15) and (Woodson 1981). The ultimate issue is not
the design, but the evaluation of the design by users. This can be done with a proto-
type and a users survey with the prototype. When the specifications are captured in
executable models, the prototype can be rapidly generated by automatically trans-
forming the specifications into code and adding the details, like screen layouts, which
were deferred to the designers. A set of criteria, like those below, are needed to evalu-
ate user reaction to the prototype.

» Based on avalid survey 80% of participants on their first use shall:

* Find the information displays self explanatory

» Follow the sequence of user actions successfully

» Maketheir choices without error

» Complete their transactions

» Express satisfaction in using the ATM machine
Thisisaspecific example of early build and validate.

13.3.2 Structure of the ATM Machines, Core Step 5
It isnot asingle ATM Machine under study, but afamily of them. The decomposition
of the machinesinto their components is needed. In addition there will be associa-
tions among the family members that show how parts are reused among them. These
are the associations that will cause the designers to ensure parts are designed for
reuse.

There are four basic ATM machines under consideration and two of these may
be either designed for theft protection or not, yielding six kinds of machines as shown
in Figure 13-3., Kinds of ATM Machines, Modified. Protection attributes and func-
tions are shown through multiple inheritance using the Protected ATM Machine class.

279

Sub-system Analysis

ATM Machine Protected ATM Machine
Total Withdraw Cost - -

Read ATM Card Protection Cost:

Read Pin Number Min. Lifting Force: 4000 Ibs.

Alarm Temperature: 300 degrees F
Min. Cabinet Cutting Duration: 15 minutes
Min. Lock Pick Duration: 15 minutes

Validate Transaction
Execute Withdraw form Checking
Execute Withdraw from Savings

Dispense Receipt Min. Door Break Duration: 15 minutes

Alarm Vibration Level: TBD

Store L ocation Sense Heat

Cost/Payment: Sense Vibration
Send Alarm to Security

Supply Power

Supply Communication Port

Accept & Store Deposit

Dispense Money

Cancel Random No. @ Cashier

Cancel Transaction

located in A Zk
] | |
Receipt Only Machine M oney Dispensing M achine

Total Receipt Cost Total Dispense Cost
Theft Protected: Y/N

Execute Deposit to Checking

Execute Deposit to Savings Dispense Money
Execute Make Loan Payment

Print Random No. on Receipt

Display No. @ Cashier

Cancel Transaction /\

Money & Deposit Machine
Total Dispense & Deposit Cost
Theft Protected: Y/N

Execute Deposit to Checking
Execute Deposit to Savings
Execute Make Loan Payment
Accept & Store Deposits

Bank Transaction Machine
Total Transactions Cost

Execute Apply for Account
Execute Borrow Money
Execute Make Investment
Execute Sell Investment
Execute Cash Savings Bonds
Execute Wire Funds

Execute Get Cashier Check
Execute Get Money Order
Execute Get Investment Data

Figure 13-3. Kindsof ATM Machines, M odified

Thereisan equation for the cost of any of these machines:

280

Sub-system Analysis

e Tota cost = withdrawal cost + installation cost + servicing cost + maintenance
cost + manufacturing cost + operating cost + security cost +/- location cost/
payment.

A cost/payment attribute has been associated with the Store Location. Having
store locations for receipt on ATM machinesis a matter of a business arrangement
with chains of stores like convenience stores. The work to negotiate such agreements
is planned and scheduled in the Build and Test Plan. The negotiation may result in
rental paymentsto the convenient store chain, or in payments by the store chain to the
bank for having the attraction of banking in its stores. This part of the planning would
normally be developed during Concept Analysis, the discussion of Chapter 11. As
this example has been developed, the opportunity for supplying Receipt Only ATM
machines is not discovered until later, during sub-analysis of the system tier. It
becomes an issue requiring resolution by revisiting the Build and Test Plan developed
in Concept Analysis and modifying the implementation planning from those earlier
steps to include development of new business rel ationships, implementation of an
unanticipated class of machine, and modification to field service plans and imple-
mentation. Thisis an example which requires change control as discoveries are made
during engineering to synchronize the planned ongoing work with the impact of the
discovery.

Figure 13-4., ATM Machines, Parts List and Associations, shows the composi-
tion of the machines and how they are interrelated for reuse of parts and field service.
The Receipt Only Machine is built from a Receipt Machine LRU, Least Replaceable
Unit, and a Cashier Display LRU. If one of these machinesfails, the LRU’s are what
is replaced in the convenience store, as a unit. All of the other four kinds of ATM
machines use the Receipt Machine LRU, secured into their cabinets, for display, com-
putation, network interface, receipt printing, and diagnostics. This minimizes stock-
ing of different parts, and maximizes production runs. Each of the machines hasits
own cabinet; the cabinet classes are shown with light shading. The cabinets for the
theft protected machines will be expensive and used only where necessary. All four
machines that dispense money use the same Money Dispenser LRU. In Figure 12.4
that classis shown twice and is shaded dark so that the reader does not have to dea
with lines crossing in the figure. (Some tools do not allow the repetition of aclassthis
way and the tool tracks crossing association connections without confusion). The pro-
tected machines use the same Theft Correction LRU.

281

Sub-system Analysis

Protected Protected : . . .
Money Dispensing Deposit & Money Depc'>\7t 8;] Money M on?\'/ly Dlhs_pens ng R?\c/la pttTOnIy
Machine Machine achine achine achine
| | | | | | | | |
Protected Money Protected Deposit Money Dispenser Cashier
Dispenser Dispenser Deposit Cabinet Dispenser Cabinet Display
Cabinet LRU Cabinet LRU LRU LRU LRU
LRU LRU
Theft
Protection Receipt
LRU Machine
LRU
LRU = Least Replaceable Unit | | ? |
Uninterruptible Card Display Receipt
Power Supply Reader Input Cabinet
2nd LRU 2nd LRU 2nd LRU 2nd LRU
Network Circuit Printer
Interface Board 2nd LRU
2nd LRU 2nd LRU

1

Computer

Software

runson

Figure 13-4. ATM Machines, PartsList and Associa-

282

The Receipt Machine LRU, which isused in all of the kinds of ATM Machines,
isbuilt from apower supply, network interface, card reader, circuit board, display unit,
printer and cabinet. These seven items are second level LRU’s. They are replacement
units when a Receipt Machine LRU istaken to arepair facility for repair. The circuit
board, cabinet, and software will likely require engineering devel opment. The other
items can likely be procured from suppliers. The display/input unit may have to be tai-
lored to this product by a vendor. The aggregationsin Figure 13-4., ATM Machines,
Parts List and Associations, capture not only the parts lists for each kind of ATM
Machine, but also the reuse architecture of the products. The models capture the engi-
neering creativity in finding a good reuse architecture.

Sub-system Analysis

Both protected machines use the same Theft Protection LRU shown in Figure
13-5., Theft Protection LRU. The network control and alarm generation are handled
by the Receipt Machine Circuit Board which contains the computer and software.
Much of the system complexity and response behavior to both the Thief and the ATM
Customer is captured in the software.

Theft
Protection
LRU

0

Heat Noise Analog
Detector Detector Signal
2nd LRU 2nd LRU Conditioning

2nd LRU

Figure 13-5. Theft Protection LRU

Attributes and Allocation of Behavior

The parts list needs to be augmented with attribute values, and with interconnection
diagrams. The attributes are examined first at 2nd LRU level, LRU level, and then at
ATM Receipt Machine level. A reasonable set of values are given for cost and for
MTBF design goals.

The behavior of the ATM Receipt Machine is allocated to the parts. Figure 13-
6., The Components as Objects with Attributes and Functions, shows the components
with their attribute values, design goals at this stage, and functions. Based on the cost
attributes the Receipt Machine has a cost goal of $1030.

283

Sub-system Analysis

284

Card Reader Display/Input

Cost: $75 Cost: $200

MTBF: 50yr MTBF: 50yr.

Read Card Display Start Instruction

Display Re-swipe Instruction
Display Password Instruction

Printer Display Repeat Password | nstruction
Cost: $150 Display Transaction Selection Instruction
MTBF: 25yr. Display Amount Selection Instruction
Print Receipt Display Completion Information

Network Interface | | Circuit Board

Cost: $30 Cost: $400

MTBF: 50 yr. MTBF: 50 yr.

Provide Protocol Initidlize ATM

Generate Start Instruction

Uninterruptible Power Supply C;?ggfg;fgt;a
Cost. $_100 Generate Re-swipe Instruction
MTBF' S0y, " Generate Password Instruction
Provide Electric Power Accept Password
Validate Password
- - Generate Repeat Password I nstruction
Eecﬁ’ pt7é:ab|net Generate Transaction Selection
Mc')rSth 5 Accept Transaction Selection
L 25). Generate Amount Selection
House Compor_lents Accept Amount Selection
Connect Electrical Components | | Request Validation & Account Information

Receive Vdidation & Account Information
Validate Transaction

Generate Receipt Information

Generate Completion Information

Accept Completion Choices

Complete Transaction

Return to Generate Start Instruction

Return to Display Transaction Selection
Check Alarm Threshold

Generate Alarm

Figure 13-6. The Components as Objectswith Attributes and Func-

The Receipt Machine failsif any of these components fails. Under these condi-
tionsthe reciprocal of thetotal MTBF isequal to the sum of the reciprocal MTBF's of
the components. (Blanchard and Fabrycky 1990, 355) The Receipt Machine MTBF is
5.6 years. The MTBF's assumed are quite long and would require conservatively
designed integrated circuits, very high quality electrical connectors on the cabinet, and
avery high quality printer. Printer life in yearsis dependent on the number of receipts
printed in that time because failure is aresult of mechanical wear. The assumption

Sub-system Analysis

above corresponds to about a million receipts between failures. The number of field
service personnel and the cost of field service are predicated on the machine reliabil-

ity.

Replaceable Units.

Figure 13-7., LRU Objects, shows the functions and attributes of the Least

Theft Protection Cashier Display Money Dispenser
Cost: $300 Cost: $70 Cost: $2000
MTBF: 5yr. MTBF: 50yr. MTBF: 3yr.
Sense Noise Display Number Dispense Money
Sense Vibration OK Transaction

Protected Dispenser Cabinet

Protected Deposit Cabinet

Cost: $6000
MTBF: 25yr.

Cost: $6500
MTBF: 25yr.

House Components
Connect Electrical Components

House Components
Connect Electrical Components

Dispenser Cabinet Deposit Cabinet
Cost: $1200 Cost: $1600
MTBFE: 25yr. MTBEF: 25yr.
House Components House Components

Connect Electrical Components

Connect Electrica Components

Figure13-7. LRU Objects

The attributes simply sum up the parts tree. The cost to manufacture adds. MTBF fol-
lows a sum of reciprocals law. When the parts tree is captured in atool, the summa-
tions readily automated. This can be done with amodeling tool that capturesall of the
models or with a spread sheet.

When the attributes are summed to the ATM Machines the results of Figure 13-
8., The Five ATM Machines, are obtained

285

Sub-system Analysis

Protected Protected : . .
Deposit & Money Money Dispensing Depc,)a;f;“ Ir\1/Ieoney M ont;,\'/ly ;ﬁ?}?a ng
Machine Machine
Mfg. Cost: $9830 Mfg. Cost; $9,330 Mfg. Cost: $4630 Mfg. Cost: $4230
MTBF: 1.3yr. MTBF: 1.3yr. MTBF: 1.8yr. MTBF: 1.8yr.
Receipt
Dispensing
Machine
Mfg. Cost; $1.100
MTBF: 5.1yr.
Figure 13-8. The Five ATM Machines

Hardware Interconnection
When the behavior has been defined as done here, the allocation of functions to com-
ponents establishes many of the interconnections, those between active objects that
exchange input/outputs. Figure 13-9., Interconnection Diagram, shows the interfaces.

Uninterruptible
Power Supply
powers 2nd LRU powers
powers powers
powers
Display Card Network .
Input Reader Interface ZPS Tgu
2nd LRU 2nd LRU 2nd LRU n
controls controls
Circuit
Board
ntrol
controls ond LRU controls
ggcbler'g cabinet connects physically
ond LRU to all the other LRU'’s
Figure 13-9. Interconnection Diagram

286

Sub-system Analysis

Software Components
The software components are devel oped in the next chapter as an example of the
hand-off from systems engineering to software engineering and the design of compo-
nents based on system models. A hand-off of this nature may occur in any of thetiers
of development when a system, subsystem, or component is to be supplied by a busi-
ness partner or a supplier company.
13.4 Exercises
1. Anayzeinstallation and field service for the ATM Machines
a. Apply the six core steps to the analysis
b. Compare results with the assumed results in Chapter 13.
2. Modd the subsystems of a computer
a. aretheseal produced by a single vendor?

b. which systemswill be designed more fully by the computer manufacturer?
Why?

Model the subsystems of a hospital and their relationship to each other.

Consider a communications systems provider. Is the information needed by the
provider about a satellite the same as the information needed by the satellite manu-
facturer?

5. Inwhat rolesis asatellite viewed by
a. antennadesigners
b. communications vendors
c. rocket launchers

d. themilitary

e

. satellite manufacturers

13.5 References

Blanchard, BF and Fabrycky, W. 1990. Systems Engineering and Analysis, Second
Edition. Englewood Cliffs, N.J.: Prentice Hall.

Woodson, E.W. 1981. Human Factors Design Handbook. New York: McGraw Hill

287

Sub-system Analysis

288

Hand-off

14

Hand-off

14.1 What Hand-off Is

The hand-off isthe transition between the system design work and the design work
performed by individual engineering disciplines, or by suppliers. The systems engi-
neering information, specification, developed at the higher tiers must be delivered to
the specialty engineers in an rigorous and understandable format. The disciplines
must also be able to feed information back into the systems engineering domain so
that estimates of total system performance can be refined as parts of the design are
worked through to implementation

Within the design process for large systems hand-off occurs at different tiers of
hierarchy. Business rarely decides to attempt to develop all of the components of a
major system. Out sourcing is a prominent aspect of modern system development.
Instead businesses choose certain aspects of the system design in which they will spe-
cialize. These aspects of the system design will be pursued further than those aspects
which are contracted to suppliers, purchased from vendors or provided by business
partners. It may be a system, subsystem or component that is devel oped and supplied
externaly. The outside vendors, suppliers, and partners need to do the same rigorous
engineering as the initiating engineering organization, but they receive system engi-
neering information and specifications as a hand-off from the initiating engineering
organization.

Considering the case of the ATM system, many of the hardware elements are
likely to be sourced from external vendors. It would be unrealistic to assume that the
display unit LRU or the uninterruptible power supply LRU are going to be devel oped
by the same company that is developing the ATM system. The engineering skill and
knowledge required by these tasks is too disparate. These are also components which
arereadily available in the commercial marketplace making it hard to develop them
internally with cost competitiveness.

Itismorelikely that the developer of the ATM system will choose to design the
software which drives the system and the cabinetry which houses the ATM machine.
Each of these are not aready available in the marketplace. Each also offers the com-

289

Hand-off

pany the potential for providing a discriminator that will enhance one or more of the
effectiveness measures. In every system designed, the companies must make similar
choices about the scope of their expertise and at what level hand-off should occur.

For the sourced components then, hand-off occurs at component tier. For the net-
work sub-system and the back-end information processing system, other businesses
supply entire sub-systems at the sub-system tier. For the components that are devel-
oped internally several more tiers of design can occur before hand-off occurs. Even
when the components are sourced, companies are starting to move away from a hand-
off based primarily on text shipped to adifferent organization. Instead the system team
contains members from all of the organizations involved and from all of the disci-
plines. Design information, including models, is shared among teams that cross both
organizational and discipline boundaries. This has the predictable result of reduced
errors and miscommunication and a higher likelihood of maximizing the effectiveness
measures.

This chapter focuses on the hand-off between the systems engineering discipline
and the speciality disciplines which will design and specify the low level components
from which the system will be composed. It also discusses some of the continuing
coordination needs between the systems engineers and the specialty engineers.

Two handoffs are studied in this chapter, each to a software discipline. The hand-
off to database engineering and to user interface engineering will each be examined.
Before we can look at the handoff, however, we need to take the subsystems down
another level of design. This level will establish the appropriate context for handing
off the design.

14.2 Context For Handoff

290

In the previous chapter we already followed an example of the core technical process
applied to the subsystems context. Rather than repeat that here we simply present the
models of the ATM design taken to the next level of detail.

Hand-off

pdates
owns ATM Machine Controls
Controller
ATM Machine ATM Machine
Database Update Machine Status User Interface

Store Machine Status

Find Offered Transactions

Receive Transaction
Validate Transaction
Synchronize

Process Card Insertion
Format Receipt

Store Transaction
Reset

Start ATM

Shutdown ATM
Accept Transactions
Perform Transaction
Cancel Transaction
Process Card Insertion
Run ATM Diagnostics

Drives

ATM Machine
M oney Dispenser

Dispense Money

Display Start Instruction
Display Reswipe Msg
Display Password Prompt
Display Repeat Password
Display Transaction Selection
Prompt for Additional Info

griiﬁeg:glp?ney Print Receipt
Display Completion Info
Support Field Service Re?':\% aC‘:yard a
Time Operations Capture Password
Capture Transaction Selection
Capture Additional Info
Receive Completion Choices
Enter Diagnostic Mode
Notifies Schedules Alert User
ATM Machine ATM Machine
Network Interface Clock
Listen for Messages Update Time
Send Messages Generate Interrupts

Figure 14-1. Sructure Diagram for ATM Software Architecture

Figure 14-1., Sructure Diagram for ATM Software Architecture divides the
ATM into three major structural portions with afew supporting pieces.

Figure 14-2., View of ATM Machine Software Behavior gives the behavioral
description of the ATM machine's software. The main allocation of regquirements and
functions in this behavior lie within the normal, maintenance, and testing operations.
The hand-off to the engineers in charge of the user interface and database pieces will
be examined in the context of the normal operation block. In actual design, of course,
these pieces need to be specified and handed-off for all phases of operation.

291

Hand-off

| Normal
Operation

yes

Initialize|v, | Test »| Select i(Or) » Maintenance | Continue
ATM ATM Operation Operation Operation

| Testing
Operation

Shutdown
ATM

v

Figure 14-2. View of ATM M achine Software Behavior

14.3 ATM Handoff to User Interface

292

A fair amount of information about the user interface has already been specified in the
earlier tiers of design development. In any reasonable sized software system the user
interface design and implementation will have far reaching consequences for the
development of the rest of the system. 50% to 80% of the total software in many large
projectsis dedicated to driving the user interface (Brown 1988).

This being the case it is extremely important that the user interface be handled
with special care. It can not be considered as an afterthought, something to through
together after the “real” system is designed and built. If we revisit the behavior for the
ATM from chapter 12 and look at how many of the behavior elementsinvolve the user
interface we seethat well over half of the behavior isdirectly affected by the interface.
Figure 14-3., User Interface Related Behavior of ATM Machine. shows this by shad-
ing the elements of the behavior which affect the user interface. Whatever choices are
made in designing the user interface are likely, therefore, to directly impact many of
the other components of the systems.

Hand-off

Card Display @ Display
Re-swipe Re-pest
Instruction Password
A v A
Y bad . bad
Initiali Display Start] | Read Validate |goog | DIsPIaY
Sl 0 = P = M g =
nstructions ar a [Password
good
= Request -
no Ul =\
— | Account o Ualeon - Vaidaion |
Validated & Account & Account
ves Information Information
Requested
Informatio | bad
A@ >6n d> Vdidate |
Transaction
Display Capture Prompt Capt_u_re
—»| Transaction —| Transaction —*Additional [—*|Additional —
Selection Selection Info Info

Additiona
Info

] Display Receive
;gg; ¢ Completion —» Completion — 'I(;?anr:ggttieon siop
P Information Choices
continue

User Interface
Output Behavior

User Interface
Input Behavior

Figure 14-3. User Interface Related Behavior of ATM Machine.

293

Hand-off

14.3.1 Assess Available Information
Aswith the other levels of detail, at separation asimilar core processis applied. We
begin, once again, by gathering all of the relevant available information. We start with
the models devel oped thus far.

Models
Figure 14-3., User Interface Related Behavior of ATM Machine. provides the execut-
able specification for the behavior needed from the User Interface.

A final decision has not yet been made about what transactions are too be offered
through the ATM network (see Figure 11-10., View of Behavior of the ATM Systemon
page 246), and the ensuing discussion lead to an initial set of transactions to imple-
ment. The analysisin making this decision highlightsthe possibility that it will change
as the system evolves, perhaps not in the initial implementation, but as a evolutionary
growth of the system. The impact that this has on the user interface and other compo-
nents isto decide to use a flexible approach which can accommodate requirement
changes of this sort easily.

Scenarios of ATM usage can be derived from looking at the behavior of the bank
customer, as shown in Figure 12-5., View of Behavior of ATM Customer.

Effectiveness Measures

Some of the effectiveness measures are relevant to the Ul, in particular is EM6. “Cus-
tomers shall prefer to use the ATM system over the bank tellers.” Thismeasureisin
part addressed by the physical locations of machines within the ATM system. New
effectiveness measures were devel oped at the previous tier of design which trandate
the original measure into rigorous and verifiable effectiveness measures for the User
Interface. These are:

e Based on avalid survey 80% of participants on their first use shall:

» Find the information displays self explanatory

» Follow the sequence of user actions successfully
» Make their choices without error

e Complete their transactions

» EXxpresssatisfaction in using the ATM machine

Domain Knowledge
Especially at hand-off “new” information becomes available. This new information
comes in the form of professional experience and education of engineers skilled in a
particular discipline.
When the design is handed over from one discipline to another, often necessary
changesto the design or requirements are quickly identified. In this case arequirement
to adhere to the Americans with Disabilities Act, ADA, iswell known by the Human

294

Hand-off

Factors community. This places new constraints on the way the ATM User Interface
is designed. For instance, the interface may be required to be Braille-equipped. For
the purposes of this example we will ignore this new requirement to keep the example
simple. The way to manage changes such as this with a change adjudication process
are discussed elsewhere. Coming out of the change adjudication process will be the
accepted set of available information. The three parallel core steps can now be pur-
sued.

14.3.2 Parallel Desigh Steps
In the core process the parallel design steps are:
1. Define Effectiveness Measures

2. Create Behavior Model, and
3. Create Structure Model.

Similar design work occursin separation but the design steps begin to change so
asto transition the information into the form needed by the specialty engineering
groups.

For the user interface one of the additional models that needs to be developed is
the user’s mental model (McGraw 1992). This model extends the customer model
developed in the earlier tiers. The customer models developed so far tell how the cus-
tomer behaves, what responses are desired from the customer and what stimulations
are given to the customer. These are termed the behaviors in systems engineering
terms or work processes in user interface terms. They also include the structure of the
ATM machine context asiit relates to the user. Human factors engineering must take
into account these work processes and structure but must augment them with the
mental model of how the users views the world. If the end design of the user interface
is not consistent with the users’ mental models then additional training must be
planned to introduce the concept of operation. For the ATM, exampl e the effective-
ness measures require that the user interface design match the users' mental models
in order to meet EM6. EM6 states that 80% of users will successfully usethe ATM on
their first attempt, thus no training time is provided for.

In the case of the ATM the mental model isfairly easy to discern. The behaviors
expected of the ATM user are the same as the existing behaviors of the same user at a
bank teller window. Only the actual mechanics of the transaction change. From the
user interface design standpoint, one of the challengesisto match the user interfaceto
the process of an actual bank teller. Other parts of the mental model of the users con-
cern the degree of computer experience expected. Sincethisisto be deployed for the
genera public arelatively low experience base is assumed. Users will be assumed to
have experience with calculators and simple push-button interfaces. We must not
neglect smaller percentage of computer literate users. They could be turned off by an
interface that is overly “user friendly.”

295

Hand-off

296

With thisall in mind we begin to devel op the more detailed behavior of the user
interface. Figure 14-4., Behavior of Display Sart Instruction gives a behavior for the
first piece of the user interface. This behavior takes into account the possibility that
the ATM may have afailure of some sort and need to display a message different from
the normal message. It also provides alooping mechanism to output more information
than can fit on asingle screen.

Display
Start |
Instruction

Intro
Yich v
Sen oK o

Retrieve Format Display Message | Yes
Intro —> Intro Intro Comple?e -
Message Message Message

Se
Status

Not OK

Retrieve
Intro

Message

A

Error
Message
Figure 14-4. Behavior of Display Sart Instruction

Similar lower level behaviors need to be developed for each of the user interface
related blocksin Figure 14-3., User Interface Related Behavior of ATM Machine. on
page 293.

In paralel with the development of the behaviors the structure of the user inter-
face needs to be developed Figure 14-5., Sructure of User Interface Components
givesthe OMT diagram of the user interface. It consists primarily of theinput buttons,
the output windows for the screen, and the controller class. The input devices are bro-
ken into two subclasses since it is likely that they will be sourced as separate items.
The output areas are similarly subclassed. Here the distinction between the subclasses
isnot physical. They will each be rendered on the same physical display device. The
difference is semantic, with each window class performing a different role in the logi-
cal design of the user interface. These two class hierarchies are associated by an inter-
face controller class. A great deal of the behavior is mapped onto this controller class.
OMT diagramswith this general format are relatively common for single tasking user
interfaces. Thismodel also will mesh well with the users' mental model of interacting
with asingle bank teller. In this case the interface controller performsthe role of being
the single interaction point.

Hand-off

Discrete
Input Device
Value Receive
Signal Input Events Interface
g P P Controller
| /\ | Color
N - Pattern
umeric -
Display Start Inst.
Button Keypad Prompt for Card
Prompt for Password
labels Prompt for Amount
Prompt for Additional
Information
Prompt for Completion
- Display End Msg.
WIndOW L DriveDisp|ay |n|t|a||ze D|Sp|ay
Size Display Error Msg.
Color
Display Text.
| | |
Button Auxiliary Main Background
Interaction Window | | Interaction Window Display Window Eield
Color
Display Graphic Pattern
: Display
Action
Button
Title
Accelerator
Receive Input
Figure 14-5. Sructure of User | nterface Components

Once the behaviors are al modeled and the structure definitions are set, we are ready
for thefinal parallel design step in hand-off to user interface engineers. The user
interface now needs to be mocked up. Multiple versions of the interface with varia-
tions on the operating concept are often mocked up.

M ock-ups extend the executability of the models from a system engineering
simulation to something that can be shown to the various stakehol ders for confirma-
tion that the system behavior is what they expected. Frequently, despite the fact that
rigorous systems engineering discipline may have been followed, changes are intro-

297

Hand-off

298

duced at this point. Features that were not thought of are added to the work scope.
Others, that were planned, are removed or changed. Of course, al of the requests for
change have to be dealt with using the change management process.

Figure 14-6., User Interface mock-up displaying the start instruction and Figure
14-7., User Interface mock-up prompting for a transaction selection show the mocked
up screen displays.

A'TM User Interface Mockup

Welcome to
OmniBank ATM

I Insert Card to Continue |

Figure 14-6. User | nterface mock-up displaying the start instruction

ATM User Interface Mockup

Welcome to withdraw|
OmniBank ATM
Deposit|

Select A Transaction |
I Inquery'

0ther|

Figure 14-7. User Interface mock-up prompting for atransaction selection

These displays are easily put together using any of the commercially available
screen layout tools such as Xdesigner in the Unix environment or Visual Basic on the
PC platform. By hooking the mock-up to the executable behavior models, it can be
used to run scenarios through the entire simulation as the interior models are devel-
oped.

Hand-off

The multiple versions of the mock-ups are taken forward to the next core step
for trade-off analysis and selection based on the verified user preferences from sur-
veys and interviews conducted with the intended users.

Mock-ups of this nature serve multiple rolesin a project. They provide early
validation of the systems operating concept by exposing usersto aworking model.
They aso form the basis for development of the actual product. The tools used to
develop the mock-up produce the skeleton programming code in avariety of lan-
guages. Figure 14-8., Fragments of executable code produced by user interface mock-
up tool gives a sample of what this code looks like.

299

Hand-off

Widget background field = (Widget) NULL;

Widget main_display window = (Widget) NULL;

Widget auxillary interaction_window = (Widget) NULL;
Widget button_ interaction window = (Widget) NULL;

void create_shell (Display *display, char *app_name, int app_argc,
char **app argv)
{

Widget children([4]; /* Children to manage */

Arg alle64]; /* Arg List */

register int ac = 0; /* Arg Count */

XtSetArg(allac], XmNtitle, “ATM User Interface Mockup”); ac++;

XtSetArg(allac], XmNargc, app_argc); ac++;

XtSetArg(al[ac]l, XmNargv, app_argv); ac++;

widget0 = XtAppCreateShell (app_name, “ATM prototype”, appli-
cationShellWidgetClass, display, al, ac);

ac = 0;

XtSetArg(al[ac], XmNspacing, 30); ac++;

XtSetArg(allac], XmNmarginWidth, 5); ac++;

XtSetArg(allac], XmNmarginHeight, 5); ac++;

XtSetArg(allac], XmNentryAlignment, XmALIGNMENT_END); ac++;

XtSetArg(al[ac], XmNentryVerticalAlignment,

XmALIGNMENT BASELINE BOTTOM) ; ac++;
button_interaction window = XmCreateRowColumn (widget2, “but-
ton interaction window”, al, ac);

act_buttonl = XmCreatePushButton (button_interaction window
“Action Button 1”, al, ac);

children[ac++] = background field;
children[ac++] = main_display window;
children[ac++] = auxiallary interaction window
XtManageChildren (children, ac);
ac = 0;
XtAddCallback (act_buttonl,XmNactivateCallback,
interface_controler.mainloop, ACT BUTTON,1) ;

childrenlac++] = act_buttonl;

}

int main (int argc, char **argv)

XtToolkitInitialize () ;

app_context = XtCreateApplicationContext () ;

display = XtOpenDisplay (app_context, NULL, argv[0],
“ATM_prototype”, NULL, 0, &argc, argv) ;

create_shell (display, argvI[0], argc, argv);

XtRealizeWidget (widgetO) ;

XtAppMainLoop (app_context) ;

exit (0);

Figure 14-8. Fragments of executable code produced by user interface mock-up tool

300

Hand-off

14.4 Separation to Database

The handoff to database engineering also follows the core engineering process. As
aways thefirst step isto assess the available information. The context for the portion
of the system being designed is especially important to consider. In this case the sys-
tem being designed is the ATM machine. The rest of the ATM system lies within the
context for this design. The impact this hasis that the mgjority of database work lies
within the context. The database within the machine is transient in nature, storing a
short term log of transactions which are waiting to be committed to the main ATM
system database. It will also be used to store the all owable sequence of transactions
that are allowable for the current user. This usage of the database requires coordina-
tion between the chief software architect and the database engineer.

14.4.1 Available Database Information
From the initial information develop in the ATM system context analysis:
» 11.2 The automated teller machine system shall communicate the transactions
it captures to the banks.

e 11.3 The automated teller machine system shall accept transactions after read-
ing a cash card and receiving avalid pin number from a system user.

» 11.4 The automated teller machine system shall execute only those transac-
tions for which validation is received from the bank.

» 11.6 The automated teller machine system shall print receipts for the transac-
tions executed.

Figure 12-13., Associations with ATM Machine on page 271, gives the context
for the ATM. This serves to frame the context for the database used within the ATM
machine. Figure 14-1., Sructure Diagram for ATM Software Architecture on page
291, refines that information showing the database in the context of the rest of the
ATM machine software.

Other available information is the knowledge of the partitioning of behavior
between the ATM and the transaction concentrator. This was not detailed previously
in the example but is assumed here. In short, the database internal to the machineis
responsiblefor tracking short term knowledge. It must be able to recover itsown state
from any exception conditions that arise. It also has to ensure that the transaction con-
centrator has logged any transaction that it performs. The concentrator is responsible
for long term logging of transactions and for printing of all of the reports required of
the system. We also have available any of the other models that are devel oped for
other parts of the system. These can be called upon as needed, for clarification or pos-
sibly for introduction of change that the database subsystem requires.

As aways we proceed to the parallel design steps.

301

Hand-off

14.4.2 Behavior and Structure of ATM database

Database design requires both structural modeling and behavioral modeling. It also
has its own set of measurement criteria or effectiveness measures. One of the advan-
tages that arise from designing with executable modelsisthat the implementation is
separated from the design. Thusif, asislikely in this case, the prudent approach is to
implement the database directly within a programming language then the design can
be transformed into code directly. If, on the other hand, the design calls for more
highly crafted database mechanisms, the design can be transformed into a schema for
use with acommercial database management system. The portion of the database
design that lies within the transaction coordinator islikely to need thislevel of sophis-
tication. The same design approach is employed in each case, however, with the fina
implementation choice postponed until the design is complete. The choice can then be
made based on weighing all of the factorsin the design.

Behavior

Figure 14-9., View of ATM machine database behavior givesthe normal processing
associated with the ATM machine database.

Norma ATM
Database
Operation

—

Card PI N
Data Number

—) Processlyl Account

List

Find Bank Match to
Account [Offered —>» ATM
Transactions Capability

(Vj;datlon) Llst

Build Validate

Insert Record

yes
|

Receive Open Validate Perform Commit

Transaction —® Local —® Transaction—» Transaction—"| Transaction—»Continue
Request Transaction & Lock & Unlock

Trarlljsaction
ata Prepare Close
» Receipt [—® Account [
Record

Figure 14-9. View of ATM machine database behavior

302

This behavior lies within the normal operations context presented in Figure 14-
2., View of ATM Machine Software Behavior on page 292. Looking at this behavior we
can see that the database behavior isalinear path through a sequence of functions,

Hand-off

with one iterative section. The use of graphical models to view, and construct, the
design of the database has made this attribute of the design plainly apparent. With the
behavior laid out we can now proceed to the database structure.

Structure

In designing the structure of the database we can reflect back the behavior for identi-
fication of the necessary objects. Some of the database objects will be used to store
transaction related data. Other items will be needed to store data which isinternal to
the workings of the system. The inputs and outputs to the process steps are used to
identify candidate items for inclusion in the database as are the names of the process
step. In thisway teh database engineer transform the requirments given in the form of
a behavior model into the necessary structure definition. A listing of these includes:

e Account

e Transaction

* Bank

* Lock

* Receipt

+ Card

e PIN Number

These are al candidates for representation in the database. Further engineering
analysis leads us to eliminate some of the candidates and add others. Card and PIN
Number are both eliminated because they are transitory with respect to this database.
When the central ATM system database is designed these will be reconsidered. Bank
isalso eliminated since there are no relevant characteristics associated with it. Receipt
reguires more consideration. It could be made a part of the design or could be elimi-
nated depending on what other choices are made. Thisis adecision |eft to database
engineering experience and knowledge. Methodology can not be used to makeit.

In our sample design we have chosen to eliminate receipt in favor of keeping
Transaction which we feel more accurately names database information. Account and
Lock are also kept, each for a different reason. Account has identifying information
which is needed for the duration of the database entries. Lock is more of atraditional
database element which might be provided as part of the implementation choice or
need to be modeled. In our case we choose to model it.

Beyond theinitial candidates we have added a few classes. We need a class to
store the information relating to the available operations that a bank offers. We also
have added a class which house the database control behavior and information.Figure
14-10., View of ATM machine database structure givesthe OMT diagram of our
design.

303

Hand-off

ATM Machine
Database Controller Lock
owns
T i Author
ransaction easo
Coordinator Signal Input R n
Communicates| Find Offered Transaction
Receive Transaction
Log Transaction Validate Transaction
: - Close Transaction
Commit Transaction .
: Process Card Insertion
Route Transaction Format Receipt
Validate Transaction Governs
validate PIN Close Account Record
i Transaction
Current Supervises
Amount
Source
Account Destination
Check PIN Timestamp
validate Allowable Commit
Terminate
Recover
® Print
Operation
Display Item
OPcode

Figure 14-10. View of ATM machine database structure

304

Aswith the user interface engineering, we can build this design using interactive
design tools. Thesetools can then turn the design around into an implementation. This
generation of the implementation, or at least its structural elements ensures that the
design is accurately transformed. As with the transition between tiers of systems engi-
neering hierarchy, the automation of the hand-off eliminates chance for introduction
of error. Figure 14-11., Automatically Generated C++ Database Declarations gives
one of the possible code projections from the OTM model. The same information
could just as easily have been trandated into code for implementation with SQL data-
base management system.

// DECLARATIONS FOR OMT MODULE atm
class Transaction_ Coordinator;
class ATM Machine Database Control;
class Account;

class Lock;

class Transaction;

class Operation;

class ATM Machine Database Control

public:

void Recover State ();

void Find Offered Transaction ();
void Receive_ Transaction () ;

void Validate Transaction () ;
void Close_Transaction () ;

void Process_Card Insertion ();
void Format Receipt ();

void Close_Account_Record () ;
protected:

Account* ptrAccount;
Set<Operation*> ptrOperation;
Set<Transaction*> ptrTransaction;
Lock* ptrLock;

}i

class Account

Transaction_Coordinator* ptrTransaction Coordinator;

public:
void validate () ;
protected:

ATM Machine Database Control* ptrATM Machine Database Control;
Transaction_Coordinator* ptrTransaction Coordinator;

Vi
class Transaction

public:

void Commit () ;
void Terminate () ;
void Recover () ;
void Print () ;
protected:

void* Amount;
void* Source;
void* Destination;
void* Timestamp;

ATM Machine Database_Control* ptrATM Machine Database_ Control;

Lock* ptrLock;

i
class Operation
protected:

void* Display Item;
void* OPcode;

}i

Figure 14-11. Automatically Generated C++ Database Declarations

ATM Machine Database_Control* ptrATM Machine Database_ Control;

Hand-off

305

Hand-off

145 Hand-off

Hand-off is one of the critical design pointsfor any system. The requirements for each
of the components must be clearly and unambiguously conveyed to the speciaty engi-
neers. Asthe design is passed along the basic core technical process continues to be
employed. It is aso augmented with modeling techniques which are peculiar to the
specialty. We have looked at only two handoffsin this chapter. In practice there would
be 10sto 100s of handoffs to a variety of specialties, even in asystem of modest size
such asthe ATM system. Each of these needs to be handled with care and diligence.

14.6 Exercises

1. Anayze hand-off to the engineering of field service and installation for ATM
Machines (a subset of the whole system to limit problem scope).

a. Select useful models from the exercises of Chapter 13.

b. Apply the six core steps and extend as needed the results of Chapter 13 to
establish how ingtallation and field service can become a competitive income
producing operation.

c. Define the parts of the ATM Machinesthat are involved and the kinds of infor-
mation which must be supplied.

d. Definethe major elements of training required.
e. Definerepair, resale, and disposal activities.
Define the hand-off points for the components of a compuiter.

3. What information is required to hand-off the design of a chiller for awater cooler?
How should it be presented?

4. Systems are often synthesized for existing components. How does this effect hand-
off?

5. What factors should be considered in determining when hand-off should occur ina
design?
14.7 References

Brown, C. M. L. 1988 Human-Computer Interface Design Guidelines. Norwood:
Ablex Publishing

McGraw, Karen L., 1992, Designing and Evaluating User Interfaces for Knowledge-
based Systems, Prentice-Hall.

306

Interface with Acquisition and Management

15

Interface with Acquisition and Man-
agement

15.1 Introduction

The preceding chapters describe how to model all kinds of systems: products, ser-
vices, businesses, processes, and plans. The same modeling techniques were applied
to the systems engineering process itself with emphasis on the technical engineering
work. The major behavior models and information models for the systems engineer-
ing process are collected together for reader convenience in the last chapter.

In addition to modeling the systems engineering process, the handoff to engi-
neering design disciplines was described in “Hand-off” on page 289. This chapter
describes the remaining major interface of systems engineering, the interface with
acquisition organizations and with management. The usual situation pertains. The
cultures, processes, notations and naming conventions have evolved independently
such that the common abstractions and development steps are obscured. This chapter
identifies the common abstractions that pertain to the interface with acquisition and
management.

15.2 Introduction of Modeling into Business Cultures

The introduction of the modeling of complex systemsinto businesses for which it is
new requires a culture change. Such an introduction can be initiated only if those in
charge of setting business goals favor the change. Those in charge must see the
change as one which will improve business profitability and can be integrated with
the existing culture. In addition the change must be perceived by the engineers
affected as hel ping them with the goals, schedul es, and evaluations which they must
meet. This population of engineersincludes not just the systems engineers but also all
those who receive specifications from them or who participate on integrated teams.
The several existing cultures with which the systems engineering with models
must integrate have long independent development histories. This chapter considers
two types of businesses and shows how the development of systems with modelsis
related to these traditions. The relationships are close and compatible. However, a
first look at the relationships shows substantial differencesin notations, the naming of

307

Interface with Acquisition and Management

308

things, and in the views of information used. The two business types this chapter con-
siders are the Aerospace supplier industry and commercial product/service develop-
ment businesses.

The aerospace industry responds to the major agencies of government and the
acquisition authorities which they have established. The development of aerospace
productsis controlled by government budgeting and the rules of acquisition authori-
ties. The state of system development and its best practices are summarized in the
emerging systems engineering standards (IEEE P1220, 1994), (EIA/ANSI, 1996).
Some relationships are devel oped here between the P1220 standard and the six core
systems engineering steps used in modeling. The EIA/ANSI standard, scheduled to be
released later this year) develops higher levels of abstraction than those included in
P1220.

Commercial product/service development businesses are led and controlled by
their board of directors and their management. Sophisticated techniques have been
developed over the years in companies and business schools to establish a business
strategy which matches products and services to the marketplace to gain competitive
advantage. Management adoption and implementation of these strategies drives the
systems engineering that is done. The methods, techniques, views of information, and
notations used by management for strategy analysis have evolved separately from sys-
tems engineering and are different in appearance and naming conventions. However,
some of the basic abstractions used by management are identical to those used by sys-
tems engineers and engineering teams, because both groups are analyzing product or
services and their appeal to customers. It islikely futileto try to establish asingle
notation and set of views of information to be used by all. Within management circles
and also within the systems engineering profession a plethora of notations and views
arein use. It is useful to select a representative modern methodology for strategic
business analysis, and extract from it the basi ¢ abstractions which are common to stra-
tegic business analysis and to systems engineering. This basic understanding can then
be used to transform information between business management and systems engi-
neering teams, or to support teams that directly integrate management strategy experts
with the product development team. Relationships are devel oped here between a rep-
resentative modern methodology for commercia business strategy development,
(Gale 1994), and the six core systems engineering steps.

Interface with Acquisition and Management

15.3 Commercial Product/Service Development Businesses

These commercial businesses develop their own products and services, manufacture
or source the parts/infrastructure, and sell their product lines/services over decades.
Occasionally atotally new product or serviceis developed. More frequently product
features are extended or new technology isintroduced. There is no financia return to
the business for up front investment in new product until customers voluntarily make
purchases based on their evaluation of the best offering available to them. The prod-
ucts range from simple systems to very large complex systems. Competition and up
front investment in product keep the devel opment processes | ean.

A century of developing techniques for business strategy has been integrated
into Customer Value Analysis, CVA, (Gale 1994). Some of these techniques have
emerged from the pioneering work of Deming and Juran in the 1950’s and its applica-
tion in Japan and the United States. Quality Function Deployment and House of
Quality methods are now widely applied. Strategic planning at GE in the 1970’s and
studies by the Profit Impact of Market Strategy (PIMS) Program demonstrated the
importance in understanding related factors such as market share and market per-
ceived quality and value as seen by customers and prospective customers, (Gale
1994, 230). To the tradition of financia reporting, tight financial control, and high
manufacturing quality, CVA adds market perceived quality and value. To organiza-
tional function heads with fiefdoms, CVA adds interfunctional teams that understand
competitive strategy. Analogous developments have been occurring in the devel op-
ment of systems. To the tradition of defining systems with text requirements, model
based systems engineering adds executable modeling for efficiency and rigor. To the
earlier practices of individual engineering fiefdoms, modern engineering practice
adds interdisciplinary teams that understand the system requirements and effective-
ness measures. The effectiveness measures, domain analysis and concept analysis of
systems engineering are closely related to perceived quality and value in CVA.

Just as there have been many notations and methodol ogies applied to systems
engineering, many non-financial measures and representations have been applied to
business analysis. Often customer satisfaction, market perceived quality, productivity,
innovation, and technology trajectory are known to beimportant but are not presented
in away that an interfunctional team can make use of that information. One of the
modern systematic presentations of the information is provided by the seven tools of
CVA, (Gale 1994, 209). The seven tools are:

309

Interface with Acquisition and Management

1

Market-Perceived Quality Profile

» Quality related to competitors

» Quality attributes with importance weights

» Perceived quality as scored by customers for each attribute

» Quadlity Ratio of own product score vs. competitors score for each attribute

» Market-Perceived Quality Ratio as weighted average of attribute Quality
Ratios

For example, quality attributes for luxury cars could be: trouble free, fuel economy,
aesthetics, service, comfort, driveability, rapid acceleration, large and roomy, sales
environment, and brand image.

2.

M arket-Perceived Price Profile

» Pricerelated to competitors

» Price satisfaction attributes with importance weights

» Price satisfaction as scored by customers

» Relative Price Ratio of own product score vs. competitors score

For example, price satisfaction attributes for luxury cars could be: purchase price,
trade-in allowance, resale price, and finance rates.

3.

Value Map

» Relative Price Ratio from (2) vs. Quality Ratio from (1)
Won/Lost Analysis

» List recent sales efforts and who won/lost

 Attach explanation

Head-to-Head

* Quadlity Ratio of own product score vs. competitors for each attribute
* From (1) above

Key Events Time Line

 List of important eventsin the marketplace
o Liststime

» Listswho responsible

What/who Matrix

* Quality attributes vs. responsible organization

Five of these seventools, 1., 2., 3., 5., and 7. utilize quality attributes or price sat-

isfaction attributes. These customer attributes correspond directly to the systems engi-
neering effectiveness measures which are used to guide trade-off to find a near
optimal design. The weighting functions used in CVA correspond to the weighting

310

Interface with Acquisition and Management

functions used to create a single cost function for trade-off. The same basic abstrac-
tions drive much of the business strategy analysis and the criteriafor finding anear
optimal design for the products that implement the design in the marketplace.

In both CVA and in model based systems engineering, it is necessary to develop
many of these attributes and weights by survey of customers, operators, or otherswho
are knowledgeable. Relative value to the customer in systems engineering is often
obtained by performing concept analysis as described in “ Concept Analysis’ on
page 229. This provides a quantitative value number for customer perceived value
attributes based on contribution of the product to the profitability of the customer. For
the situations in which it applies quantitative modeling is a more rigorous approach
than those described in CVA and yet is completely compatible with CVA. In many
situations survey, not analysis, must be applied to get the desired attribute values
related to customer preference. Some situations are subtle and require both. For
example, aquality attribute or effectiveness measure for high performance automo-
bilesisrapid acceleration. This quantity can be calculated during specification and
design with engineering equations from the attributes of parts like the torque-rpm
curve for the engine, transmission ratio and friction losses, friction between tires and
road, and automobile weight. The acceleration achieved can be measured on proto-
type cares and compared with measurements on competitors cars. One automobile
company found that their automobile had superior acceleration to it chief competitor
but still fell behind in customer scoring of this quantity. Further analysis showed that
the competitor car responded to rapid throttle advance with a dlight pause, and then
with asmall backward flexure of the seat when accel eration began. Customers
responded to the feeling of acceleration not to the absolute fact.

Confirmation of the attribute valuesis often obtained as early as possible with
customer survey of early product prototypes or service offerings. Examplesinclude
test marketing of long life light bulbs, the GE appliance facility in Louisville appli-
ance park for customer use of prototype appliances, prototype medical diagnhostic
equipment in select teaching hospitals, and early trials of cellular phones or home
shopping networks. Executabl e specifications resulting from model based systems
engineering provide opportunity to get this confirmation earlier and at lower cost in
many cases.

The optimization features of engineering of model based systems engineering
and the application of concept analysis form the interface between systems engineer-
ing and strategic management of the business. It isuseful and effective to create a
direct bridge using effectiveness measures, their weights, concept analysis modeling
and surveys. To the extent that thisis done, it becomes possible to expand the ideas of
teamsin the two fields, management and systems engineering. The interfunctional
management team and the integrated product development team can merge. At the
very early stages of adevelopment management participation on the team is expected
to be large. Asthe development matures and progresses, and as the team grows much

311

Interface with Acquisition and Management

larger in size, thereislikely an increasing engineering and manufacturing presence on
the team and arelatively smaller management participation. The effectiveness mea-
sures, and the executable model s that produce effectiveness measure values bind man-
agement and engineering together in this approach because the effectiveness measures
are the same abstractions as the customer val ue satisfaction attributes and quality
attributes. With executable modelsit is possible to project the views of information
wanted by managers or by engineers because the same basic abstractions are impor-
tant to both.

15.4 Modeling and Aerospace Acquisition

312

Aerospace businesses must respond to funded contract opportunities as they become
available. The system requirements, timing, funding amount, funding rate, funding
continuity, schedule, and process requirements of the contracts are largely out of their
control. These determinative factors are established by congress, the executive, and
government agencies, and are influenced by the media. Thisis a highly technical,
political, competitive, and social determinative process which considers national
advantages and dangers. Systems engineering in this arena generally assumes that
there will be arequest for proposal, RFP, issued by an acquisition authority to which
the business must respond. Classically that RFP contains atext list of requirementsto
be met by the design and validated on the completed system. For large complex sys-
temsthe requirements document can be hundreds or more of pages. Awarded contracts
define the requirements to be met, the schedule, the deliverable, the standardsto be
met, and extensive reviews and documentation required by the acquisition authority.

This acquisition process has resulted in the devel opment of extremely large and
complex systems which push state-of-the-art and work under extreme conditions. The
best practices of systems engineering have been described and are taught at the
Defense Systems Management College, (Kockler 1990), and are appearing in emerg-
ing standards, (IEEE P1220 1994), (EIA/ANSI 1996). The acquisition processis
under pressure to become more efficient because of the difficulty encountered in con-
tinuing to acquire and maintain the increasingly complex systems which are desired
with the funding that is available for them.

If one considers the engineering of complex systemsto be avaluable jewel, then
it is different facets of that single jewel that are viewed from different directions by
aerospace systems engineering, by commercial product/service development busi-
nesses, and by systems engineering using models and objects. Except for detailed
knowledge of particular applications and technologies, the actual technical system
engineering work that needs to be done to develop complex systemsis the same for
the many types of systems. This can be seen from Figure 15-1., Typical P1220 Sys-
tem-Part Breakdown, which shows physical elements from which the system is built.

In OMT, this would be a parts tree aggregation.

Interface with Acquisition and Management

Domain Analysis—m»

a

Concept Analysis — - |Higher Level

Higher Leve
System

System

System

External
System

!—k—\

Product

Product

Subsystem

Subsystem

Subsystem

Subsystem

Subsystem

!—k—\

Assembly

Assembly

Component

Component

Component

Component

Component

!—‘—\

Sub-

Component

Sub-
Component

Sub- Sub-
Component

Component

!—I—\

Part

Part

Figure 15-1. Typical P1220 System-Part Breakdown

313

Interface with Acquisition and Management

Standard P1220 provides a standardized set of names for the objects in the suc-
cessive levels or tiers of decomposition/synthesis of the system. It defines apart asthe
lowest element of a physical or system architecture, specification tree, or system
breakdown structure that does not need to be partitioned further. (e.g., bolt, nut,
bracket, semiconductor, computer software unit). Thisis an typical example of the
part tree or aggregation tree for the system in an OMT model.

There are three very important concepts that apply to Figure 15-1., Typical
P1220 System-Part Breakdown.

1. What constitutes a system, product, subsystem, assembly, component, subcom-
ponent, sub-assembly, or part is relative to the business dealing with it.

2. The systems engineering process applied at any of these tiers of decomposition
is basically the same, a core process applied repeatedly.

3. The requirements that defined the system came from application of the system
engineering process at a higher level of decomposition, from thetier above.

15.4.1 Relativity of Systems, Products

At any tier of decomposition of the system: product, subsystem, etc., any of these
physical elements can be sourced from a subcontractor. The product, subsystem, or
component for which the subcontractor agrees to supply becomes the system so far as
the contractor is concerned. What isthe “ system” isrelative to what you agree to
design and supply. Systems are systems of systems supported by an extremely large
vendor network. The vendor receives a description of what iswanted, its require-
ments, and supplies objects that meet what is wanted often built to a proprietary
design of the subcontractor. The requirements can be supplied in several forms as text
shall statements, as complete narrative descriptions of the excitations, responses, per-
formance and constraints and as executable model s of the excitations, responses, per-
formance, constraints, and structure.

15.4.2 A Core Technical Systems Engineering Process

314

A fully useful systems engineering processis applicable at al tiers of the contractor/
subcontractor network. It is able to define fully what a system isto do and to define
fully how the system isto be built. It is able to produce both requirements and a near
optimal design solution. It must consider the systems engineering of the product, its
integration, its distribution, support, and disposal, needed product training, product
test, and product manufacture.

If the process is model based, then the process description must define the mod-
elsto be used, the ordering of their use, and what they capture and transform.

Interface with Acquisition and Management

15.4.3 Requirements Come from the Tier Above

The requirements that appear in arequest for proposal or a contract come from sys-
tems engineering applied at the tier above. There are aerospace businesses, often
called system integrators, which deal primarily with the high level generation of
requirements and the coordination of subcontractors. Many other kinds of businesses,
such as commercia product/service developers, do not respond to arequest for pro-
posal because they develop internally the product/service concept, itsimplementation
as aproduct line over time, and how to modularize it for high levels of reuse, ease of
evolution, and compatibility with earlier releases. They often outsource the majority
of the product elements or service infrastructure. They control the requirements they
present to their suppliersto their own internal or industry agreed standards. From the
viewpoint of thiskind of business the systems engineering process does not begin
with an RFP and analysis of requirements from the RFP or a contract; it begins with
analysis of the market. Descriptions of systems engineering using models takes asim-
ilar point of view. Thisresultsin two tiers of development or decomposition above
system under development as shown in Figure 15-2., Renaming of P1220 System-

Part Breakdown.
Domain Analysis—» Domeain of
Businesses using
System under
Development
| |
. Business using Business using
Concept Analysis — System under System under
Devel opment Development
System
System System under System System
Development
Product Product
Figure 15-2. Renaming of P1220 System-Part Breakdown

315

Interface with Acquisition and Management

The business which purchases and uses the system will also use many other sys-
tems that must all work together. Concept analysis, Chapter 11, models the business
using the system under study to establish the value of that system to the business and
the operators and users of the system. This may be done for a single point of time or
over aperiod of time such as a decade to understand product evolution. Domain anal-
ysis extends this to a domain of businesses using the system under development.

Very oftenit isdesirableto sell the system to more than asingle kind of business.
This goal makes it desirable to partition the system such that the system and the ele-
ments of the system match the different businesses uses. Thisis done by domain anal-
ysis which applies the techniques of modeling to a collection of businesses using the
product. Functionality and modularity that satisfy multiple businesses are abstracted
from the analysis. Thisis design for reuse.

A supplier business responding to an RFP often need not be concerned with the
business and domain levels of decomposition. If there are problems with the require-
ments received or if it is desirable to market the resulting product to businesses other
than the contractor issuing the RFP it may be important to analyze these tiers.

15.4.4 P1220 Systems Engineering Process

316

Figure 15-3., The P1220 System Engineering Process shows the process as described
in the P1220 standard.

Interface with Acquisition and Management

Process Inputs
} Requirement

Trade-offs & Impacts Requirements
——————— RETUITETTER S ~ Trade Studies
AT VR | & Assessments
Requirement &
Requirements Baseline * Constraint Conflicts
Requirements
I Baseline
Validation
Validated Requirements + Decomposition/Allocation
Baseline Trade-offs & Impacts Functional
- .
Functiona - Trade Studies
+— i
Analysis — | & Assessments
Decomposition &
g Functional Architecture * Requirement Allocation
) Alternatives
I Functional
Verification
Verified Functional * Design Solution
Architecture Trade-offs & Impacts Design
| Synthesis Trade Studies
’ . : P> & Assessments
Design Solution
Physical Architecture * Requirements & Alternatives
. Systems
< PhyS' cal Analysis
Verification

Verified Physical Architecture

—>
- Control

\—V Process Outputs

Figure 15-3. The P1220 System Engineering Process

The P1220 standard and its detailed description of the work steps to be done
does not assume the existence of an RFP with a text requirements document. Rather
the P1220 description of Requirements Analysis, Requirements Trade Studies &
Assessments, and Requirements Baseline Validation are a prescription for devel oping

317

Interface with Acquisition and Management

the requirements from information about the business, operators, and users who will
utilize the system under development. This prescription can be used at the Domain
and Concept/Business levels of decomposition as well as at the lower tiers discussed
in P1220. However, the partitioning of the systems engineering process differs from
that used in “ Core Technical Process’ on page 97. The equivalenceis quite smple.
The application of the six core technical modeling steps to the context of an object is
equivalent to the shaded requirements related steps. A second application of the six
coretechnical modeling stepsto the object itself is equivalent to the non-shaded steps.
The same modeling process is applied twice, once to the context of the object, then to
the object itself.

From the viewpoint of modeling, the requirementsfor a particular subject system
are created by applying the six core technical stepsto adomain of businesses using the
subject system, or to a particul ar targeted business using the subject system and to the
context of the subject system. The information generated is not just the requirements
for the system but a context description and a partitioning that is near optimal for a
product line, for evolution of the subject system over time through a succession of
releases, and for high levels of reuse. When thiswork is done by one organization and
then the requirements are used to contract further devel opment with other organiza-
tions, an RFP or RFP’s must be written using the requirements. This is frequently the
situation in the Aerospace industry. In much of the commercial world a commercial
product/service development company does all of thiswork and produces require-
ments for the vendor network that supportsit. In al cases the requirements may bein
the form of text shall statements, narrative operations concepts, executable models, or
a combination of these.

15.5 Summary

318

Thefull analysis of a system to be developed, the subject system, involves systems
engineering at al the levels form domain to parts. All of thiswork is done and con-
trolled by commercial product/service development businesses. Thiswork istypically
partitioned among several businesses in the aerospace industry with requirements
imbedded in an RFP used to transfer information and contract responsibility among
the organizations.

The management techniques used by commercia businesses rely heavily on
guality attributes, price satisfactions attributes and associated weighting functions.
These quantities correspond directly to the effectiveness measures and the weights for
adesign cost function that are essential to trade-off in systems engineering. The points
of view and the assigned teams can be unified by recognizing and using these com-
mon abstractions. The quality attributes and price satisfaction attributes are the major
items of information for the interface between management business strategy and the
engineering of complex products and services.

Interface with Acquisition and Management

The viewpoint of engineering with models and objects and the viewpoint of
standard 1220 are very similar in terms of description of the detailed work steps. The
major difference liesin how the steps are partitioned in the process description. From
the modeling standpoint it is useful to describe the processin a manner that show the
repeated use of afew different models. Thus the description is asingle repeated core
technical process of six modeling stepswhich is applied first to the context of an
object to generate requirements and then to the object itself to generate system
design. This partitioning is consistent with high levels of abstraction and with what
occursin commercial product/service development businesses. P1220 does not parti-
tion the processin this fashion. Rather it partitions the processinto requirements anal-
ysis, functional analysis and synthesis supported by trade studies and assessments
which are grouped together, generalized, as systems analysis. The partitioning of the
system engineering process with a separate partition for requirements analysis
matches supplier businesses which receive requirementsin an RFP from an initiating
organization. The interface between the businesses responding to the RFP and the ini-
tiating organization can be bridged by augmenting the text requirements of the RFP
and the text based proposal responses with executable models. The information trans-
fer is made more rigorous and less prone to errors of interpretation. The work can be
performed in accordance with the best practices proven through use and described in
standards such as P1220. After contract award, it is possible to demonstrate the
progress being made by executing the models as well as by providing documentation
for review.

15.6 Exercises

1. Create examples of the seven tools of Customer Value Analysisfor the ATM sys-
tem.

a. Consider the banksthat own the system, the bank employees who work withiit,
and customers who useiit.

b. Compare quality attributes and value attributes with effectiveness measuresfor
the ATM Machine.

2. Map the detailed steps that decompose Requirements Analysis, Functional Analy-
sis, Synthesis, Validation, and Systems Analysis onto the six core steps applied to
context of the object under development and to the object under devel opment.

3. If the RFP-based acquisition system works to produce complex systems which
push the state-of-the-art, why doesit need to change?

4. Inwhat way(s) does the six-step core technical process differe from the emerging
standards? How are they alike?

319

Interface with Acquisition and Management

15.7 References

|IEEE P1220 1994, |EEF Tria-use standard for application and management of the
systems engineering process. Institute of Electrical and Electronic Engineers,
New York, February, 1995

EIA/ANSI 1996, EIA Interim Standard Systems Engineering, Electronic Inductries
Association, Arlington, Va., to be released

Gale, Bradley T. 1994, Managing customer value: Creating quality and service that
customers can see, The Free Press, New York

Kockler, Frank R. 1990. Systems Engineering Management Guide, Defense Systems
Management College, US Government Printing Office, 000802001202-5.

320

Choosing Methodology

16

Choosing Methodology

16.1 Tailoring Meta-process to Methodology

This chapter focuses on the alternatives that exist in modeling systems. The alterna-
tives and tailorability of the systems engineering meta-process are very broad. Yet a
team developing alarge complex systems needs to perform its work efficiently with
high levels of information exchange among the large numbers of team members. The
team must proceed with a consistent set of engineering steps, views of information,
notations for that information, and reviews of progress. The team needs to work with
amethodology they can apply efficiently. The meta-process must be tailored and par-
ticularized for the teams.

Although the engineering steps and notations presented in this book can be used
directly as a pattern for a methodology, in many cases it will be most profitable to fit
the methodology to the existing culture and experience of the work force. The work
force may be trained in aerospace style systems engineering, in one of the forms of
object-oriented software development, in the structured analysis type of software
development or some other tradition. A near optimal solution to this process system
problem is to match the proven best practices of systems engineering to existing cul-
ture, because training is very expensive. Some heuristics for tailoring:

» Utilize proven best practices as incorporated in the core technical process and
described detail in texts, (Blanchard and Fabrycky 1990).

» Decide how the system development will be partitioned among the teams

» By asystem partslist, which emphasi zes subsystems to components
» By functional groupings, which emphasizes similar functions

» By partitioning the context into weakly interacting regions, which empha-
sizes response to excitation without predetermining functional groupings
or decomposition into parts.

321

Choosing Methodology

Select the views of information to be used and the notation for the views.

» Theviews must span the work to be done.

» Theteam members must be trained to understand and work with the views.

» Training costs and errors from misunderstanding will be minimized if the
work force has experience with most of the views and notations sel ected.

Tailor the assignment and sequencing of engineering steps to the work force

and the application

* In some organizations there is along term culture of some groups perform-
ing analysis of text requirements, behavior, and structure; and separate
groups doing performance analysis.

» Chooseto either partition the core technical process among teams, or to have
teams execute the whole core technical process on their assigned partition
of the system.

* Either encourage the teams to use the concurrency among the core engineer-
ing steps creatively, or give them arecommended sequence of development
for those concurrent steps.

» In some applications the objects are well known in advance and creating
structure model s first makes sense.

* In other applications functionality and excitation behavior are known most
thoroughly and creating behavior models first makes sense.

» Sometimes the effectiveness measures have either been well defined so they
can be accepted early, or they badly need definition to guide the devel op-
ment and teams so that doing effectiveness measures first makes sense.

Incorporate awell defined process for handling the unexpected discoveries

made by the team during development and for handling the late discoveries

made by sponsors and then required of the development.

» Thediscoveries will interrupt the ongoing systems engineering work at any
point and send it back to some other point.

» Aninstituted process and supporting organizational structure is required to
handle the discoveries.

16.2 Best Practices and Views of Information

322

As had been shown in this book, systems engineering hasits own best practiceswhich
have been refined for many decades. Several of these best practices have a great
impact on the information generated, on the views of information which areused in
modeling and on process steps which are critical to any methodology used for systems
engineering. Among these best practices are:

1. Hierarchical development in tiersinclusive of domain analysis, concept analy-

sis, system anaysis, sub-system analysis,... component analysis. It may be top

Choosing Methodology

down, decomposition, or bottom up, synthesis.

2. Specification of what a system isto do, its behavior, separate from how it isto
be built, leaving design to design engineering teams. This enforces separation
of behavior models from structure models.

3. Creation of trade-off criteria and use of atrade-off process step to find a near
optimal system solution from a multitude of possible solutions. Thisis made
efficient by using alternative mappings of behavior onto structures of aterna
tive sets of components to develop a set of alternative designs for evaluation.
Separate models of behavior and structure are needed to make this practice
efficient.

4. Creation or refinement of an implementation plan at each tier of development.

16.3 Views of Information in Systems Engineering

The two primary views of information are those of structure and behavior. They are
kept separate as views for purposes of specification and trade-off. They are merged
by the allocation or mapping of behavior onto the structure for a complete model of
the system, sub-system or component. Figure 16-1., Possible Views of Behavior and
Sructure shows this separation and the mapping. There remains the issue of what are
the possible views of behavior and of structure.

16.3.1 Possible Views of Structure
Description of structure requires aggregation or parts list, interconnection, and classi-
fication, all annotated with number. Thisresultsin aprimary view of structure and six
subsidiary partial views. Primary view:
1. Aggregation, Interconnections, and Classification
Subsidiary partial views:
1.1 Aggregation or partslist
1.2 Interconnection
1.3 Classification
1.4 Aggregation with Interconnection
1.5 Aggregation with Classification

1.6 Interconnection with Classification

323

Choosing Methodology

I nterconnection

o Context Diagram ;
Classification [Aqggregation
(Class Tree) AssSnbly (ggrt ree)

|

| Views of Structure |
[]

Structure Model
(How)

Defines Interconnection, Interfaces

Map of
Behagvior

to
Objects

Encapsulates Functions

Behavior
Model

(What)

Represented By

| ViSNsof'Behavior |

A

i State, 1/O, Functions
F)arl(’j/\”Oel C'::cL)Irrllt?cl)lon’ Eventsl Control
Projections Projections
of . of
Behavior Behavior
Function, Euncti -
Control Uho C%trﬁt%l ’ FUI’IICEI) on,
Events

Figure 16-1. Possible Views of Behavior and Sructure

324

Choosing Methodology

16.3.2 Possible Views of Behavior

Description of behavior requires function, control (ordering of functions), and Input/
Output. There are a so two ways of representing concurrent functions, more than one
function is executing at a given time, the predominant situation in large systems. One
can describe what is occurring at agiven time and call it state, or one can describe the
functions as parallel functions. Thisresultsin two primary choicesin views of behav-
ior, each of which has subsidiary partial views.

1. Parallel function, control, and input/output
1.1 Paradlel function and control
1.2 Parallel function and Input/output
1.3 Input/output and control
2. State, control, events, function, and input/output
2.1 State, control, and events

2.2 Function and input/output

Views of Behavior and Notations

These views are collections of information which can be represented with many dif-
ferent graphic or text notations. Some of the popular notations are listed below.

1. Pardlel function, control, and input/output - Behavior Diagrams
1.1 Pardlel function and control - Functional Flow Block Diagrams
1.2 Parallel function and Input/output - Data Flow Diagrams, N-Squared Diagrams
1.3 Input/output and control - Control Flow Diagrams
2. State, control, events, function, and input/output - example not known
2.1 State, control, and events - State Charts

2.2 Function and input/output - Activity Charts, Data Flow Diagrams, N-Squared
Charts

All of the possible views of behavior, with one exception, are in use and are sup-
ported with tools. The exception is 2. above, state, control, events, function, and
input/output, which would be difficult to represent in a single diagram. Systems engi-
neering tools tend to neglect Structure 1.3, classification. Software engineering tools
tend to neglect the primary behavior views based on paralel function and to empha-
Size state.

State Charts rather than state transition diagrams are included in Behavior 2.1
because state transition diagrams are limited in their ability to model real systemsand
arenot hierarchical. State charts have removed those limitations. In addition thereisa
close relationship between Functional Flow Block Diagrams and State Charts.

325

Choosing Methodology

The IDEF notations have not been included in this discussion because they lack
some elements that are needed for executability.

In systems engineering intrinsic sequences of functions may be made concurrent
by pipelining, and intrinsically concurrent and independent functions may be serial-
ized for performance reasons. These transformations preserve what the system does
and optimize performance. They change the states, so that the state pictures must be
transformed also.

16.3.3 Equivalences - Statechart and Functional Flow Block Diagrams

326

Statecharts, (Harel 1987), have the advantages of being hierarchical, of having awell
defined relationship with functions, and of defining “and” states that reduce the prob-
lem of state explosion. State explosion occurs when one considers problems such as
five elevators serving thirty floors of a building. The total number of different simulta-
neous functions and conditions, up down, stopped, floor, for the system of five eleva-
torsistoo large to serve as a useful representation of the problem. State charts have
been integrated into some software engineering methodologies, (Rumbaugh €t. al.
1991).

Asisgeneraly the case with different languages, there will be certain expres-
sions which can be written in one of the languages with no equivalent in the other. In
spite of thisfact, it is often the case that a significant span of modeling can be written
in both languages with trand ation between the two. Thisisthe case for FFBD's and
statecharts.

Statecharts represent states as shown in Figure 16-2., Sates in Satecharts.

Actions and Activity whilein a State

State Name

entry / entry-action
do: Activity - A
event-1/ action 1
event-2 / action 2

exit / exit-action

Figure 16-2. Satesin Sate-

Functionsin FFBD’s correspond to Activities in Statecharts. Sequencein
FFBD’sresultsin sequentia satesin statecharts. A selectionin FFBD’s correspondsto
transition to states with corresponding activities in statecharts. Concurrency in
FFBD’s, “and”, correspondsto “and” states in statecharts. This can be shown by com-
paring the core technical stepsin FFBD notation, Figure 16-3., FFBD View of Core
Technical Seps and Figure 16-4., Satechart View of Core Technical Seps.

Choosing Methodology

2
Define
Effectiveness No Feasible
Measures Solution
1 3 5
- ASESS - Create - Perfoom | pm{ Creae
Available @} Behavior Trade-Off | Feasible| Sequential >
Information Model Analysis Solution Build
& Test Plan
4
Create
—| Structure
Model
Figure16-3. FFBD View of Core Technical Steps
: Superstate 234 N\
State 2
do: Define Effectiveness Measures
AN . Aee———————
State 1 State 3
do: Assess Available Information do: Create Behavior Model
State 4
k do: Create Structure MOdel J
No Feasible
Solution

Figure 16-4. Statechart View of Core Technical Seps

do: Perform Trade-off Analysis

State 5

Feasible
Solution

'

do: Create Sequentia Build and Test Plan

State 6

327

Choosing Methodology

16.4 Some Methodology Problems and Differences

The fact that different methodol ogies can express what needs to be expressed in their
respective notations is not sufficient for them to be applied in the same engineering
discipline. Object Modeling Technique (OMT), for example, uses statecharts, data
flow diagrams, and the needed structural associations, (Rumbaugh et. al. 1991). How-
ever, OMT does not apply its process to a hierarchy of tiersto deal with domain anal-
ysis through component specification. The process of OMT omits three of the core
steps shown in Figure 16-3., FFBD View of Core Technical Seps. It does not formal-
ize core steps 2, 5, and 6. It does not combine statecharts and data flow diagramsinto
an executable behavior.

Real-Time Object-Oriented Modeling (ROOT) aso uses statecharts, (Selic,
Gullekson, and Ward 1994, 484-486). However, ROOT does not use the “and” state
construction which captures concurrency. Large complex systems have tremendous
concurrency at their top level. Best practice in systems engineering captures this con-
currency independently of structure, and then allocates it to different possible struc-
tures.

In selecting a methodol ogy and tool support for modeling in systems engineer-
ing, it is essentia that the language and notation can capture the systems engineering
information. It is equally important that the methodology contains al the steps needed
for executing best systems engineering practices.

One of the best practices which needs further comment is control of change
when the unexpected is discovered, as always happensin developing large complex
systems.

16.5 Discovery and the Change Control Process

328

In real applications the forward processis never followed without interruption
because customers discover that requirements must change, engineers discover techni-
cal problems, and management discovers need for funding and schedule changes.
These changes cause the engineering work to be interrupted at some step of the pro-
cess. They force an assessment of impact of the discovery, and work is resumed at
some different step in the process. Since the work isinterrupted at any step and may
resume at any other step, these impacts cannot be described in awork flow diagram.

The real engineering work conditions can be rigorously described. The change
control process describes identification of the need for change, change impact assess-
ment, change authorization, change planning, change execution, and processimprove-
ment based on analysis of change causes.

The word discovery is used here rather than error report or bug report because it
is very valuable to find these unknown issues as early as possible to minimize devel-
opment cost and to use the discoveries as the precious information that can improve
the process.

Choosing Methodology

Although al large programs experience imposed change and discovery, the pub-
lished life cycle models do not model the critically important change management
process. The Waterfall Life Cycle, (Royce 1987), does not show all the potential
feedback |oops among phases because those |oops can begin anywhere and end any-
where. The Spiral Model, (Boehm 1986), does not describe the criteria and issues
which are drivers for the successive product prototypes, releases, and partial builds.

16.5.1 The Change Control Process Description

The change process begins when someone discovers issues that demand a changein
the project. This discovery may be made at any level of authority. The discovery may
cause the project to interrupt work at any step of the engineering process and to go to
any other step.

The change processis shown in Figure Figure 16-5., FBBD View of the Change
Control Process. There are two major branches to the set of change process functions.

329

Choosing Methodology

3.
OR Close
Issues 7
Close
e
4. 6. wi
H Customer
— Review ;
Issues with @ Review @
Customer Contract
8.
2\
OR)= Change
OR Contrgct
Terms
5 /
. 11.
2'. IRgIe%N Execute
Identify Internally Contract
Issues Fix
9.
@ Execute
Permanent
vy Fix
1. 12. 13.
—> Dliscover —> Collect [# Improve 10. \
ssues Issues Process Execute
I\ Data Emergency @ Or
Fix

Figure 16-5. FBBD View of the Change Control Process

The upper branch describes the set of tasks which resolve the issues by making
changes to the analysis, design and implementation of the system being built.

The lower branch describes the set of tasks which report the changes, track the
changesto cause, and alter the engineering and manufacturing processesin use so that
the occurrence of a detected type of issueis reduced. The lower branch uses the occur-
rence of issue discovery to improve the engineering and manufacturing processes. Its
purpose is to reduce variance in the engineering and manufacturing processes. Itisa
critical aspect of quality analysis. Too often he who discovers and reports issues early
is punished rather than rewarded, and the discoveries are not used to improve the busi-
ness.

330

Choosing Methodology

16.5.2 Change to the System, Upper Branch

Figure 16-5., FBBD View of the Change Control Process, shows that thefirst step for
system improvement, step 2., isto identify and analyze the issues. The analysis pro-
duces a description of the issue, atechnical analysis of the impact of theissue, and a
category and priority for the issue. For large complex programs there will be many
open issues at any point of time. Subsequently any of three actionsis taken:

e Theissueisclosed, step 3., or
» Theissueisreviewed internaly, step5., or

» Theissueisreviewed, step 4. with the customer or with marketing if it affects
contract terms or if it impacts the acceptance of the product by customersin
the marketplace

Tasks 4. and 6. of Figure 16-5., FBBD View of the Change Control Process
imply not only review of aformal contract with a customer, but also review of the
less formal regquirements and understanding between engineering and marketing
functions. Thistype of understanding is critical for commercial business which make
no salesif their new products do not fit the marketplace. In both situationsit is essen-
tia to:

» Describe the issue to the customer/ marketing in language they understand.
* Analyzetheimpact of the issue with the customer/marketing.

» Listen to customers/marketing evaluate impact, which may be foreign to the
engineers, in their own language, which may be foreign to the engineers.

o Set prioritiesif there are multiple issues.

» Categorize the issues as unimportant, as not really affecting contract (hence
internal), or as affecting the contract.

For those issues that affect contract there is a contract review step 6., of the fig-
ure, that must detail a plan, a change proposal, to fix the issues with associated cost
and schedule. That plan must be reviewed by customers, marketing, and manage-
ment. There must be an agreement on how the issues are to be resolved. The proposed
changes and schedule may be accepted as a contract change, may be down graded as
an internal issue to be corrected without change to budget and schedule, or may be
judged not to be worth the time, risk, and effort to fix. Accordingly, the figure shows
branching from step 6. to steps 5., 7. and 8.

Internal review, step 5., isvery similar to review with the customer, step 4. In
this caseit is carried out within the project. The size of the project dictates how for-
mally such reviews are conducted and how the power of decision isalocated in the
organization. Very large projects with hundreds to thousands of workers require much
more formality and carefully assigned boards and responsibility than do small
projects with only a handful of staff.

331

Choosing Methodology

During the internal review, step 5, the project plans the permanent fix, step 9. In
some casesit is necessary to execute an emergency fix, step 10. Because this may
have to occur very rapidly, quick procedures may be put in place to make sure that the
identification of the issue and review/authority to make afix, steps 2. and 5., occur
without delay. Thisis particularly true for modifications to systems requiring high
availability that are in use and in the maintenance phase.

If the contract terms must be changed, then system devel opment continues based
on the change. the discovery of issuesis continuous.

16.5.3 Process Improvement

332

The early discovery of issues reduces the risk of the project going over cost, missing
delivery time, and missing the market needs. These discoveries can be used to
improve the engineering and manufacturing processes so that fewer issueswill be dis-
covered in the future. To accomplish thisit is necessary to collect the issues data, step
12., and then analyze and use that information to define and implement process
improvements, step 13

In step 12. it is necessary to collect and report the status of issues to understand
the frequency of testing/review, the frequency of issue discovery, and how well the
issue resolution process is working. These data also give a picture of how well the
project is proceeding toward arobust, validated integration. It is necessary to also
track the issues to their cause and collect that cause data. The cost of rectifying the
issue needsto be collect and associated with the cause of theissue. Thisinformationis
essential to prioritizing which parts of the engineering and manufacturing process
should be targeted for improvement to gain the most in efficiency of the work and
reduce cost and risk.

To implement process improvement it is necessary to identify process deficien-
cies, prioritize the importance of the deficiencies, create a plan to improve the process,
compare cost of theimprovement with the cost of the issues, and then execute the cost
effective plans.

Real projects aways make discoveries and encounter issues as described above.
A life cycle model which depicts what really happens on projects must include a
Change Control Process similar to the one just described. The implementation of a
Change Control Process may be very formal and complex for large projects or simple
and lessformal for small projects.

Unless staff are rewarded for discovering and rectifying issues as early as possi-
ble, issues will be uncovered late when they are expensive. Unless the information
obtained as a result of the discoveriesis used to improve the engineering and manu-
facturing processes, productivity will lag. Process improvement must be funded and
rewarded.

Choosing Methodology

16.6 Concluding Remarks

Systems engineering, as defined in the introduction, is an art. It requires training,
experience, and creativity to work efficiently through the large solution space of sys-
tems problems (a NP complete class of problems). The solutions are a near optimal
application of available resources and scientific understanding to meet the needs of
people.

The modeling described in this book is atechnique that uses the laws of science
and logic to capture the system information once and rigorously, then to transform
and expressit in the views needed by all the stakeholders to the system problem. The
transformations are essential because the stakeholders have very different back-
grounds, information needs, and training.

The modeling is not a substitute for training, experience, and creativity. If
applied blindly, the modeling will lead to unnecessarily large models which do not
converge rapidly to anear optimal solution. It isimportant to apply the modeling with
well developed heuristics like the technical systems engineering process of seven
core steps. The core steps must be applied creatively to discover the unexpected and
highly valuable solutions that have greatest value and lowest cost. They must be
applied creatively to find a solution rapidly by discarding engineering directions that
will not be useful, yet without missing the discovery of highly valuable solutions.
Discovery isthe heart of the art of engineering.

Discovery isthe finding of unexpected valuable solutions and also unexpected
and important issues. The forward work may be interrupted at any time by the discov-
ery of an issue that requires looping back to earlier stages of work for resolution.
Thusthereis achange control processin parallel with the technical systems engineer-
ing process. It iscritical. It isthe feedback that stabilizes the process and ensures con-
vergence. Some recommendations:

» Institutionalize proven best practices.

» Usemodeling as extensively as the applications, organization culture, manage-
ment support, and investment realities allow.

» Tailor agood systems engineering meta-process to a methodology for your
organization.

* Include both atechnical engineering process and a change control process.

» Introduce new process, training, or toolsfirst on projects of modest size and
relatively short duration to prove what works quickly. Then scale up.

333

Choosing Methodology

Systems engineering requires arich and broad perspective. It is a compound of
art, training, experience, creativity, scientific understanding, awareness of technology,
and discovery - applied to meet the needs of people individually, as nations and as a
world. Meeting needsis exciting. Discovery isexciting. The authorswish you exciting
careers.

16.7 Exercises

1. Describethe methodologiesfor capturing structure information. Are there elements
of structure which they fail to capture?

Describe the relationship of Data Flow Diagrams to State Charts.

3. Modd theimpact of arequirement the ATM system be able to process loan
requests.

4. How do the core steps minimize design change?

Describe the of change control on quality.

16.8 References

Blanchard, BF and W. Fabrycky, 1990. Systems Engineering and Analysis, Second
Edition. Englewood Cliffs, N.J.: Prentice Hall.

Boehm, B.W. 1986. A spiral model of software development and enhancement, ACM
Sgsoft Engineering Notes, 11, no. 4, 22-42.

Harel, D. 1987. Statecharts: A visual formalism for complex systems, Science of Com-
puter Programming, 8, 231-274

Royce, W.W. 1987. Management of the development of large software systems: Con-
cepts and techniques, Proc. ICSE, 9, IEEE Computer Society Press.

Rumbaugh, James, Michael Blaha, William J. Premerlani, Frederick Eddy and Will-
iam Lorensen, William. 1991. Object-Oriented Modeling and Design, Engle-
wood Cliffs, N.J.: Prentice Hall

Sdlic, Ben, Garth Gullekson, and Paul T. Ward, 1994. Real-Time Object-Oriented
Modeling, New York,N.Y.: John Wiley & Sons Inc.

334

A Collection of Process and Information Models

17

A Collection of Process and Infor-
mation Models

For the convenience of readers, the major process and information model s distributed
through out the book are collected here in one place for ready reference.

1. Part list or aggregation
2. Classification or generalization/specialization O

3. Assembly or association

4. Context (next nearest neighbors) or association

5. Multiplicity or number

6. Classes of objects @ zero or more © oneor more annotation
7. Instances of objects
8. Attributes of objects - weight, size... Class Name Class Name
9. Functions or operations of objects

Attribute Attribute_name
=vdue
Operation
Class Instance

Figure 17-1. Semanticsand Symbolsfor Executable Structure

335

A Collection of Process and Information Models

336

Behavior
Function
Duration

Generation
| nput/Output rate

Maxamount |+ 2 allg Consumption
rate

Min amount s & ordered
Current amount | generates

consumes |Consume | by
Tolerance inouts

Control
oper ation

Generate

outputs | -
Selection| | Sequence Concurrency|
Iteration
Non- toalimit
triggering | |
1/0
Parallel| | State
function
condition

Non- Condition provide criteria for
Condition 1/10
/10

Figure 17-2. Information Model for Behavior

A Collection of Process and Information Models

effect

Non-Triggering 1/O| | Triggering 1/O

I nput/output
Max amount
Min amount
hvsical Current amount
physic Tolerance
nature
Material 1/0 Information |/O
Energy I/0

condition

| Non-Condition 1/O | | Condition I/O|

longevity

content)\

Triggering Triggering
without with
Content Content

Stationary I/0 Transitory 1/0

access storage

— Lo
[Local 1/0] [Global 110] [Replica | [stock

Figure 17-3. Information Model for Input/Output

337

A Collection of Process and Information Models

338

Classification
(Class Tree)

I nterconnection
ContextoPiagram
Assembly

Aggregation
(Part Tree)

v

| Views of Structure |
[]

Object Model
(How)

Map of
Behagvior

to
Objects

Defines Interconnection, Interfaces

TEncapsuI ates Functions

Behavior
Model
(What)

Represented Byl

|Views of Behavior|

A

Parallel Function,
1/0O, Control

Projections|
of .
Behavior

Function, Function,
110

Control

State, 1/0, Functions
Events, Control

l

Projectiong|
of .
Behavior

N

State, Function,
Control, 1/O
Events

Figure 17-4. Behavior and Structure Information Model

A Collection of Process and Information Models

Meta-Process
Engineering
Systems

instantiate
notations
& views

Systems
s Engineering
defines Methodol ogy

automates

stems Systems - stems
%r/]gi neering Engineering g ombeddedin %r/lgi neering
Views & Notations Tool Infrastructure

Figure 17-5. Associations of Meta-Process, M ethodology, Tools, and Infrastructure

339

A Collection of Process and Information Models

340

Systems Engineering

Design Engineering M anagement
Discipline Process
) . supports planning, review,
provides detailed) :
specifications resolution of issues
Systems Engineering
reports Technical reports
specifications | Process specifications
according to according to
supports and
Foecifies product
Product
Life
Cycle
use use
Government Business
hasa
hasa
Government Commercial
Acquisition Acquisition
Process Process

Figure 17-6. Associations of Process, Product Life Cycleand Acquisition

A Collection of Process and Information Models

Iterate twice each tier,

over all tiers
L» J 5.
4. Perform 6.
| PerfomSE | g | HW, SW, Human Integrate
Core Technical Component Components
Process Design and & Vaidate
Implementation
1. 3. /
Perform
. And Perform And
Project () Change k ;
Planning Control
2.
p-| Perform
Review &
Replanning

Engineering Technical Tasks led and performed by systems engineering
with other specialties in concurrent team

Engineering Management Tasks, coordination, performed by systems engineering
with other engineering disciplines

Tasks performed by other engineering disciplines, manufacturing, and
field service planned and coordinated by systems engineering

Figure 17-7. Model for the System Engineering Process

341

A Collection of Process and Information Models

342

Iterate to Find a Feasible Solution

4.2
Define |
Effectiveness

Measures No Feasible
Solution

41 43 45 4.6
> Assess }@} Create |+ Perform | p»! Creste |[p»

Available Behavior Trade-Off Feasible| Sequential
Information Model Analysis Solution Build
& Test Plan
4.4
Create
— Structure [~
Model

Figure17-8. FFBD View for the System Engineering Core Technical Process

-—— AnalyzeContext ——P» <&—— Analyze Subject

Archltecturellg)&agn Model,
Performance

Sub-subject
Reguirements

Initial

v /
/
Context Subject
Implementatiol Implementatiol
Pan Plan

Figure 17-9. Seguential Application of Core Technical Processto Context and Subject

A Collection of Process and Information Models

1.
Assess
Available [
Information
11 15 1.6 111
Gather 1D Traceto
— Heritage | Requirement [P Source el Requilrlgments
Information Changes Documents
12
1.7 1.12
—-| Gther | g Incorporate | Classify
Information Heritagein Problems
Requirements & Define
»(And
And %@ Issues
13 18
Gather Text [/ "
oo |
A@ Information Requirements 113
Trace
14 P Requirements [—
! Gather Ops — Ing 1.10 to Source
Concept Incorporate | |
InformgtfiJon | Reference [®|Requirements
Requirements of Reference
1.14
Plan
> Issue [
Resolution
1£I_. 15k 1.19 1.20 1.23
— racl — Generate Review .
I ssue Requirements [#] Requirements Correct
Resolution Database Database Requirements
> (A@ ormat
1.16 @
Resolve | | 121 1.22 1.24
P Requirements Generate | [Review Correct
|ssues Ops Concept Ops Concept Requirements —{And
Scenarios Scenarios Database
117
| Classify |—
by
Use
1.18
L Define |
Requirement
Validation 1.25 1.26 127
Gather Correct
B nitia —VMA(;‘;"YZ?th—P Modeling
Models odels wi Database
core process

Figure 17-10. Functional Flow Block Diagram Decomposition of Core Step 1

343

A Collection of Process and Information Models

2
Define
Effectiveness
Measures
25
2.1 Define 2.6
Effectiveness Evaluate
1 . Inifi — Measures || Effectiveness
Information from Measure
Attributes Equations
2.2
|| Accept || 78
Bl\?lha(\ilélor 21 Generate 511
,(> An Effee%rt{\c/)rerr?&ss Effectiveness| 7 3 Perform
A@ T T Measre | | Measures [Priority | >
2.3 Survey from Survey
— AcceBt - Preferences
e
2.9
2.4 Define 2.10
[dentify Effectiveness Execute
| Stakeholder | Measures [» ggg%t
Participants from y
Modeling Behavior
Figure17-11. FFBD View of Define EffectivenessMeasures, Core Step

A Collection of Process and Information Models

3
Create
Behavior
Model
31 34
Accept | Define | _
Effectiveness and Trace
Measures Functions
3.2 35 3.7 3.8
—»(And Accept ,F — - -
} Strﬁ%:tegre Q@ E Og_er Vaidate [Fﬁ(ﬂ‘ﬁgf&
Model unctions Behavior Interfaces
33 3.6
Accept i 3.9
— Avalae — — Define || outpt >
Information Input/Output Behavior
Information
Figure17-12. FFBD View of Core Step
4
Create
Structure
Model
4.1 4.4
— . Accept Define |
Effectiveness .
M easures Objects
A4-2 t -~ 45 47 48
—»{And Haroepl n Define > E&x/gtcute —>» Evauate
i em sfem
Model Attributes Behavior INterfaces
4.3 4.6
Accept 4.9
] Afvail le — Q!gﬁgﬁs — Output
Information Alternative —»
Designs or
Architectures
Figure 17-13. FFBD View of Core Sep

345

A Collection of Process and Information Models

5.1 55 Yes
Accept |- — 1 Measure [
Effectiveness Attribute T 5.12
Measures Vaues culale |- Other
System Alternatives
Effectiveness
5.2 54 : 5.6 * Noy
—> Accept > : Simulate H
@} Beha\e/?or %\?Iect . A@ Attribute 5.10 5.13
Model ternatives Values Caculate Feasible
System Alternative
_»
Performance
5.3 5.7
L Estimate [
é)%?gg " Attribute Yes No
Modd Values
tocore
5.8 5.14
|| Peform || Display step 1
5 Effectiveness stem
S — M easure Effectiveness
Trade-off | Survey *
Analysis 515
Core Step 5 59 Choose |
Perform || Alternative
| Priority Structure
Survey
Figure 17-14. FFBD View of Core Sep 5

346

A Collection of Process and Information Models

|l

Unsatisfactory
6.1 6.4 6.8
Develop | Assi Executeto |——
Reeourcpe | Resources [Assess Slack,
Profile to WBS Tasks Not level Critical Path
6.2 Y / 6.5 = 6.7 6.9 L]
Develo, > »| Examine ASSess
1 s 'Q@ hiesras] | | ool [=D gushes {@
Resources| Level Realities
6.3 6.6 6.10
Develop L Asign L Assess
Precedence T Tas Build& Test [
Relationships Durations Requirements
Satisfactory
6
Create 6.11
Build and Publish +»
Core Step 6
® Figure 17-15. FFBD View of Core Step 6

347

A Collection of Process and Information Models

348

Available
Information

A

I

trace to

point to

trace to

Initial Developed
Information Information
¢ o
] |
Initial Text Heritage Initial
Requirement Information Model
extend
Initial Text || User
Operations | | Information
Concept
Adjudicated
trace to Developed
— traceto Model traceto
; N\ by origin traceto
[|
Requirement Requirement Requirement || Requirement

traceto

’_A by work to be done

Resolution

Not Verifiable |Compound| | Redundant| |Inconsjstent| traceto
|Veifiale| [TBD/TBR| [Poorly
Written
Issue
traceto
I | 1 |
| Test | [Analysis| [Survey] [Inspection]
/ by use
[[[[|
Interface Functional Temporal Non-tempora | | pesign
Requirement Requirement Performance Performance Requirement
Requirement Requirement

Figure 17-16. Information Model for Require-

A Collection of Process and Information Models

Product Stakeholders -
users, operators, buyers,
owners, customers

Marketing Purchasing
Systems)
Sdes | — Epgineering [Suppliers
M anagement M anufa:turi ng
Engineering

Design Engineering Disciplines -
Hardware, Software, Operator,...

Figure 17-17. Context for Systems Engineering

349

A Collection of Process and Information Models

350

describe
structure

Structure
operations

Object
Interfaces

Effectiveness
Measure
Survey
generate
Effectiveness Effectiveness Effectiveness
Measure Measure Measure
from from from
Modeling Preferences Attributes
Priority
Survey
compute
i generate
] compute .
o rankedby | Effectiveness | it Effectiveness
Priorities —————| Measure 5 M easure
Equations
establish determine are arguments
alternatives of equations
Cost selects Subject
Function System .
Design Attributes
compute Attributes
executes .
Execution behavior gggﬁ: have
Engine Behavior
Values
built provides
from

| Value Computati0n|

o]

Figure 17-18. Information Model for Create Effectiveness M easures I@I

A Collection of Process and Information Models

Text Behavior Context Object (g has | Opject
Information| | Information| | Information Role
kinds of roles /\
Input/ External interconnection defines Subiect
Output Systems subject system context, S/sgem Component
- 1+ interfaces -
Attributes Attributes ~ 2+
External Internal
connects | hehavior Text behavior P—
to operations g
. con t respon
excite | cep according
according composed to
to of 1+
1+
1+ Response
Scenarios 1+ | threads
Interface 1+ 1+ respond to 1+
connectsto define
subject
structure
defined by allocation of O O
behavior to components . ion:
P ’ define behavior operations
0 hierarchy
L — — — — allocated to Components
in Sructure Model
; 2+ 2, all Adjudicated
Function generale & Input/Output limit choice e
1+ r consume of 110
traceto
(c):genrtzgtci){)ns limit choice of functions Resol uti On.
traceto
traceto traceto budget to |ssue
1+
1+ S Temporal Non-temporal| traceto
Interface Functional performance performance Desian
requirement requirement requirement requirement g

Figure 17-19. Information Model for Text Require-

ments, Behavior, and Context

classified by use

Text
Requirement

< traceto

351

A Collection of Process and Information Models

Object | g has Object
Role
Input/ External interconnection defines Subiect
Output Systems subject system context, Systjem
- 1+ interfaces -
Attributes Attributes ~
t Eélgema] Text t!gltwemal —
connects avior ¢ avior
operations
excite concept respond
according according
to composed to
of 1+
1+
1+ Response
Scenarios 1+ threads
n 1+ respond to 1+
Interface connects to define
subject
structure
defined by allocation of O O flefine behavior
behavior to components i
p ‘ operations
defined by alloca allocated to o 2+
| ined by allocation
Fn?érn a%%mt Component
have g
Adjudicated
constraint
. trace to?
associated
through Attributes Resolution
allocation [] []
of functions traceto
traceto |traceto | to Components budget to budget to Issue
. . 1+
1+ 1+ Temporal Non-temporal| traceto
Interface Functional performance performance .
requirement requirement requirement requirement Design
classified by use
Text
Requirement |~ traceto
Figure 17-20. Information Model for Text Requirements, Structure, and Context

352

A Collection of Process and Information Models

Effectiveness
Measures
from
Modeling

Priority
Survey

Priority

generate

ranked by

Effectiveness
Mesasure Non-temporal
performance
Survey requirement
generates computed
. . with
Effectiveness Effectiveness
Measures Measures
from from
Preferences Attributes
1+
Non-temporal
performance
equations

Effectiveness
Measures

establish
Cost selects | Subject
Function System
Design
compute Attributes
executes .
Execution behavior gg;ﬁ’:
Engine behavior

generate

validate

Temporal
performance
reguirement

operéti

describe
structure

Structure

ons

determine
alternatives

have

Object
Interfaces

Effectiveness
Measure
Equations

arguments for

Attributes

have

Vaues

provides

| Value Computati0n|

Figure 17-21. Information Model for Perform Trade-off Analysis

T

Simulation

Estimation

353

A Collection of Process and Information Models

354

Components assembled, Subject
Risk tested, System
validated Attributes
ordersthe guygg%t
build & behavior
- monitored test of
Traackl ng by
an .
Reporting Seguentl a accounts for Business
Plan
allocates <>
Resource Milestone Time Cost
Schedule Schedule
Work Work PartsList
assignedto | Package Breakdown (aggregation
Structure of objects)

ﬂ

Validation

Timeto Funding | Risk | | Competition
Market Rate
[|
Risk |establishes | Technical | | Schedule | Cost
Survey Risk Risk Risk

Figure 17-22. Information Model for Core Step 6

of Progress

Show
end-to-end
response

Respon
Threads

A Collection of Process and Information Models

Collection of
s Analysis of analyzes | Bqgnesses using
Domain Tier Subject System
Decomposition ﬁ
uses . analyzes | Business using
Analysis of ;
Concept Tier Subject System
Corgr'l(')icglcal n= Analysis of analyzes Subject System
System Tier ﬁ
uses . analyzes Sub-systems of
Analysis of f
f Sub-sysiem Subject System
Synthesis
— Analysis of analyzes | components

Component Tier

Figure 17-23. Tiersof Analysisand Decomposition/Synthesis

355

	Engineering Complex Systems
	Table of Contents
	List of Figures
	Introduction
	1.1 The Engineering of Complex Systems Based on Models
	1.1.1 This Book
	1.1.2 Systems Engineering as a Discipline

	1.2 Importance of Engineering Complex Systems
	1.2.1 Global Economic and Technical Change
	Span of National Control and Investment in National Advantage
	Importance of Systems Engineering

	1.3 The Gap
	1.3.1 Closing the Gap
	Prior Experience in Other Disciplines
	Closing the Gap in the Engineering of Complex Systems
	Purposes of Modeling

	1.4 Definitions
	1.4.1 Science
	1.4.2 Engineering
	1.4.3 Model
	1.4.4 System
	1.4.5 Behavior
	1.4.6 Structure
	1.4.7 Context
	1.4.8 Optimization
	Context Optimization
	System Optimization

	1.5 Basic Abstractions
	1.5.1 Basic Abstractions Used with Structure
	Things or Objects
	Parts Tree or Aggregation
	Interconnection
	Number
	Classification
	Association

	1.5.2 Basic Abstractions used with Behavior

	1.6 Organization of this Book
	1.6.1 Principles of Modeling
	1.6.2 An Example of Modeling

	1.7 Summary
	1.8 Exercises
	1.9 References

	Basics of Structure
	2.1 Introduction to Structure
	2.1.1 Structure and Behavior
	2.1.2 Basic Views of Structure
	2.1.3 Executable Models of Structure

	2.2 Example - Modeling a Pocket Knife
	2.3 Objects and Classes
	2.3.1 Definition
	2.3.2 Modeling Objects in OMT
	Class Name
	Class Attributes
	Class Functions
	Instances

	2.3.3 Example - Pocket Knife, Object Class Definition
	2.3.4 Example - Pocket Knife Instances

	2.4 Aggregation
	2.4.1 Modeling Aggregation in OMT
	2.4.2 Example - Pocket Knife with Aggregation

	2.5 Cardinallity
	2.5.1 Cardinallity in OMT
	2.5.2 Example

	2.6 Classification of Objects
	2.6.1 Classification in OMT
	2.6.2 Example - Classification of Tools

	2.7 Interconnection of Objects
	2.7.1 Definition
	Roles and Interconnection
	Input/Output and Interconnection

	2.7.2 Interconnection in OMT
	2.7.3 Example - Multi-Tool Pocket Knife Context
	2.7.4 Example - Multi-Tool Assembly Interconnection

	2.8 Roles
	2.9 Allocation of Functions to Objects
	2.10 Summary
	2.11 Exercises
	2.12 References

	Basics of Behavior
	3.1 Introduction to Behavior
	3.1.1 Elements of Behavior
	3.1.2 Behavior in the System Context
	3.1.3 This Chapter

	3.2 Modeling of Behavior
	3.3 Functional Flow Block Diagrams
	3.3.1 Functions
	3.3.2 Ordering
	Sequence
	Concurrency
	Selection
	Iteration

	3.3.3 Example, Pocket Knife
	3.3.4 Hierarchy
	Example, Behavior Hierarchy

	3.3.5 Input and Output
	Behavior Diagrams

	3.4 Data Flow Diagrams
	3.5 Representation of Behavior as State
	Statecharts

	3.6 Pocket Knife Example, Summary
	3.7 Information Model for Behavior
	3.7.1 Behavior
	3.7.2 Input/Output
	3.7.3 Function
	3.7.4 Control Operations
	3.7.5 In Summary

	3.8 Information Model for Input/Output
	3.9 Relationship of Behavior and Structure
	3.9.1 Structure Models
	3.9.2 Behavior Models

	3.10 Models and Text for Requirements/Specifications
	3.11 Summary for Behavior
	3.12 Exercises
	3.13 References

	Core Technical Process
	4.1 Process
	4.1.1 Process, Methodology, and Tools
	4.1.2 Product Life Cycle, Acquisition, Systems Engineering Process
	4.1.3 The Systems Engineering Process Model
	Systems Engineering Management Tasks
	Systems Engineering Technical Tasks

	4.2 The Core Technical Process
	4.2.1 The Six Steps in the Core Technical Process
	Assess Available Information
	Define Effectiveness Measures
	Create Behavior Model
	Create Structure Model
	Perform Trade-Off Analysis
	Iterate to Find a Feasible Solution
	Create Implementation, Sequential Build, and Test Plan
	Application at Each Tier.

	4.3 Hierarchy
	4.3.1 Small Systems vs. Large Systems
	4.3.2 Tiers of Hierarchy
	4.3.3 Hierarchy, Waterfall, Top Down Development

	4.4 Re-Engineering
	4.5 Behavior Model for the Core Technical Process
	4.6 Union of Best Practice with Modeling
	4.7 Exercises
	4.8 References

	Assess Available Information
	5.1 What Core Step 1 Is
	5.2 A Requirements Taxonomy
	5.2.1 Classification by Origin
	5.2.2 Classification by the Work Needed to be Done
	5.2.3 Classification by Their Use

	5.3 A Behavior for Assess Available Information
	5.3.1 Decomposition of the Behavior of Core Step 1

	5.4 Summary
	5.5 Exercises
	5.6 References

	Define Effectiveness Measures
	6.1 What Core Step 2 Is
	6.2 Importance of Effectiveness Measures
	6.3 An Industrial Example
	6.4 How Effectiveness Measures Drive the Solution
	6.4.1 Problem: System 1
	6.4.2 Problem: System 2
	6.4.3 Problem: System 3

	6.5 Types of Effectiveness Measures
	6.6 Priorities among Effectiveness Measures
	6.7 Information Model for Core Step 2.
	6.8 Summary
	6.9 Exercises
	6.10 References

	Create Behavior Model
	7.1 What Core Step 3 Is
	7.2 How to Create Behavior Models
	7.3 Example of Behavior Development - Bottling Wine
	7.3.1 External System Behavior
	7.3.2 Temporal Performance Requirements
	7.3.3 Non-temporal Performance Requirements
	7.3.4 Operations Concept for System Context
	7.3.5 Behavior of the Winemaker
	7.3.6 Effectiveness Measures
	7.3.7 Intrinsic Behavior
	Top Level Behavior
	Expanding Gathering Supplies
	Expanding Produce the Bottles
	Putting it All Together

	7.3.8 Emergent Behavior
	7.3.9 Completing the Behavior - Adding Inputs and Outputs
	7.3.10 Views of Behavior
	7.3.11 Behavior, Structure, and Effectiveness Measures

	7.4 Scenarios and Response Threads as Paths through Behavior
	7.5 Behavior, Context and Traceability, an Information Model
	7.5.1 Explanation of the Context Region
	7.5.2 Explanation of the Behavior Region
	7.5.3 Explanation of Traceability and Budgeting
	Functional Requirement Traceability
	Temporal Performance Requirement Budgeting
	Non-temporal Performance Requirement Traceability
	Design and Traceability
	Interface Requirements

	7.6 Pitfalls in Developing Scenarios and Threads
	7.7 Summary
	7.8 Exercises
	7.9 References

	Create Structure Model
	8.1 What Core Step 4 Is
	8.2 Creating Structure Models
	8.3 Example of Structure Development - Bottling Wine
	8.3.1 Requirements Review
	Effectiveness Measures
	Non-temporal Performance Requirements

	8.3.2 The First Parts Selection, Define Objects
	8.3.3 The First Parts List or Aggregation
	8.3.4 Allocate Functions
	Time Estimates for a Manual Bottling System
	Case 1. Allocation to One Person
	Case 2. Allocation to Three People
	The Simplest Allocation, Case 3
	Allocation in the Context of the Problem, Case 4

	8.3.5 Interfaces Among People

	8.4 Information Model for Structure
	8.5 Architecture and Design
	8.6 Architecture, Applications, Effectiveness Measures and Reuse
	8.6.1 Design Simplification with Architecture

	8.7 Summary
	8.8 Exercise
	8.9 References

	Perform Trade-Off Analysis
	9.1 What Core Step 5 Is
	9.2 Trade-off
	9.2.1 Values of Attributes
	Measurement.
	Simulation.
	Estimation.

	9.2.2 Survey
	9.2.3 Calculate System Performance
	9.2.4 Iterate
	9.2.5 Calculate System Effectiveness
	9.2.6 Other Alternatives
	9.2.7 Display System Effectiveness
	9.2.8 Choose Alternative Structure

	9.3 Information Model
	9.4 The Problem of Tool Integration
	9.4.1 Prerequisites for Tool Integration
	9.4.2 A Comparison with Mechanical Engineering Evolution
	Rigorous Capture of Details
	Automation
	Semi-automated Search of the System Design Space

	9.5 Exercises
	9.6 References

	Create Build and Test Plan
	10.1 What Core Step 6 Is
	10.2 Creating a Plan
	10.2.1 Network Scheduling Approaches
	Program Evaluation and Review Technique (PERT)
	Critical Path Method (CPM)

	10.2.2 Resource Allocation

	10.3 Behavior Model for Core Step 6
	10.4 Information Model for Core Step 6
	10.5 A Check-off List for Planning Plan
	A Check-off List

	10.6 Exercises
	10.7 References

	Concept Analysis
	11.1 What Concept Analysis Is
	11.2 Applying the Core Technical Process to Concept Analysis
	11.3 Core Steps Applied to the Context of the Bank with the ATM System
	11.3.1 Assess Available Information
	Initial Information for an Automated Teller Machine System
	Requirements Extracted from the Initial Information

	11.3.2 The Three Concurrent Core Steps, 2, 3, and 4
	Effectiveness Measures for the Bank
	Context Structure for Bank
	Effectiveness Measures for the Bank
	Define the Structure for Individual Customer
	Context Behavior, the Individual Customer

	11.4 Core Steps Applied to the Bank with the ATM System
	11.4.1 Structure of the Bank with the System, Core Step 4.5
	11.4.2 Effectiveness Measure For Bank with the System, Core Step 2
	11.4.3 Behavior of the Bank with the ATM System, Core Step 3
	11.4.4 Trade-off Analysis of the Bank with the ATM System, Core Step 5
	11.4.5 Create the Sequential Build and Test Plan, Core Step 6

	11.5 Summary
	11.6 Exercises
	11.7 References

	System Analysis
	12.1 What System Analysis Is
	12.2 Core Steps Applied to the Context of the ATM System
	12.2.1 Assess Available Information, Core Step 1
	12.2.2 The Three Concurrent Core Steps, 2, 3, and 4
	12.2.3 Effectiveness Measure For Bank with the System, Core Step 2
	12.2.4 Structure of the Context of the ATM System, Core Step 5
	12.2.5 Effectiveness Measure for the ATM System Context, Core Step 2
	12.2.6 Behavior of the Thief in the Context of the ATM System, Core Step 3

	12.3 Core Steps Applied to the ATM System
	12.3.1 Structure of the ATM System, Core Step 5
	12.3.2 Behavior of the ATM System, Core Step 3
	Responses and Attributes to Thwart the Thief

	12.3.3 Structure Implications of the Theft Scenarios, Core Step 4
	12.3.4 Response of ATM Machine to ATM Customer
	12.3.5 Structure of the ATM Machine and Related Objects, Core Step 5

	12.4 Exercises
	12.5 References

	Sub-system Analysis
	13.1 What Sub-system Analysis Is
	13.2 Core Steps Applied to the Context of the ATM Machine
	Overall View of System Behavior
	Response to Thief
	Impact of Installation and Field Service

	13.3 Core Steps Applied to the ATM Machine
	13.3.1 Effectiveness Measure for the ATM machine, Core Step 2
	13.3.2 Structure of the ATM Machines, Core Step 5
	Attributes and Allocation of Behavior
	Hardware Interconnection
	Software Components

	13.4 Exercises
	13.5 References

	Hand-off
	14.1 What Hand-off Is
	14.2 Context For Handoff
	14.3 ATM Handoff to User Interface
	14.3.1 Assess Available Information
	Models
	Effectiveness Measures
	Domain Knowledge

	14.3.2 Parallel Design Steps

	14.4 Separation to Database
	14.4.1 Available Database Information
	14.4.2 Behavior and Structure of ATM database
	Behavior
	Structure

	14.5 Hand-off
	14.6 Exercises
	14.7 References

	Interface with Acquisition and Management
	15.1 Introduction
	15.2 Introduction of Modeling into Business Cultures
	15.3 Commercial Product/Service Development Businesses
	15.4 Modeling and Aerospace Acquisition
	15.4.1 Relativity of Systems, Products
	15.4.2 A Core Technical Systems Engineering Process
	15.4.3 Requirements Come from the Tier Above
	15.4.4 P1220 Systems Engineering Process

	15.5 Summary
	15.6 Exercises
	15.7 References

	Choosing Methodology
	16.1 Tailoring Meta-process to Methodology
	16.2 Best Practices and Views of Information
	16.3 Views of Information in Systems Engineering
	16.3.1 Possible Views of Structure
	16.3.2 Possible Views of Behavior
	Views of Behavior and Notations

	16.3.3 Equivalences - Statechart and Functional Flow Block Diagrams

	16.4 Some Methodology Problems and Differences
	16.5 Discovery and the Change Control Process
	16.5.1 The Change Control Process Description
	16.5.2 Change to the System, Upper Branch
	16.5.3 Process Improvement

	16.6 Concluding Remarks
	16.7 Exercises
	16.8 References

	A Collection of Process and Information Models

