
CHAPTER 6

1. AutoTEMP© - The Automated TEMP Generator

1.1 Summary
This chapter gives a comprehensive description of the results of this research, which is a

KBSS to aid in the generation of TEMP’s, that the author has called AutoTEMP©. Version

Beta 2.0 of the software release clearly demonstrates the principles of the development of a

TEMP according to a conceptualised revision of the Australian CEPMAN 1 (Australian DoD,

1995), as set out in the previous chapter.

The chapter will begin with a discussion and analysis of the CSCI AutoTEMP© requirements,

outlining such things as the development software and programming language used for the

development of the CSCI, along with a brief description of the hardware requirement

specification for this system, a brief introduction and description of Visual Basic®, and then

will describe the operation and use of AutoTEMP© and its three modules.

1.2 AutoTEMP© CSCI Requirements
The only requirement for developing the CSCI as stated by Nissyrios (1995a) was a

Windows® environment such as Windows® for Work Groups (WFWG) version 3.11, or

Windows® 95 based on an IBM compatible computer. It is envisaged that the CSCI will be

compiled into a single executable file (EXE) depending on the application development

software language.

1.2.1 The Selection of the CSCI Development Software
A number of software packages had been considered by the author for this task. Taking into

consideration the SRS as documented in Appendix V, possible candidates for the software

development that were PC based, at the time of its conception were:

• Modsim II®

• VP-Expert®

• HyperCard®

 1

Chapter 6 AutoTEMP© - The Automated TEMP Generator

• Microsoft® Access

• Layout®

• DataEase®

• ObjectVision®

• Visual Basic®

• Delphi® (Visual Pascal)

As discussed in the SRS, Appendix V, the CSCI was to be developed using an application

programming language that did not require vast amounts of specialised programming, such

that it alleviates the necessity of software coding to a base minimum, and in particular one

with a fast learning curve. Due to these requirements, the most prominent application

software development tools were Visual Basic® (VB) or DELPHI (visual PASCAL).

However, DELPHI was and still is a lot more complex than VB and hence would require a

long learning curve, the author estimated six months, as compared to one month for VB. This

is not to say that it wasn’t more than adequate to suit the task ahead, however, VB was chosen

as the software and programming language for the development of AutoTEMP© due to

reasons summarised below as follows:

• Event driven

• Alleviated the necessity of software coding to a bare minimum

• Quickest and easiest way to create Window applications

• Fast learning curve (about one month)

1.2.2 Computer Resource Requirements

1.2.2.1 Computer Software Requirements
The following software was required for CSCI development (Nissyrios, 1995a):

• DOS for Windows® 95 Version 4.00.950

• Microsoft Windows® 95

• Microsoft Office Professional Version ’95

• Microsoft Access 2.0

• Visual Basic® Professional (VBP) Version 4.0

 2

Chapter 6 AutoTEMP© - The Automated TEMP Generator

• Microsoft Project Version 4.0

1.2.2.2 Computer Hardware Requirements
Recommendation was an IBM personal computer with the following minimum characteristics

(Nissyrios, 1995a):

• Three year on-site warranty.

• 90 Mhz Pentium PCI Processor.

• 16 MegaBytes of Random Access Memory (RAM).

• 17 Inch Multi-Sync Monitor (27mm Dot Inch)

• 1.2 GigaByte Hard Disk Drive (HDD)

• 512K Cache (Pipe-Line Burst).

• 64-Bit PCI, 2MB Video Card.

• 1.44 MegaByte Floppy Disk Drive (FDD).

• Twin Speed CD-ROM Drive.

• 16-Bit Sound Blaster Card.

• Ethernet compatible in both thin-net and twisted pair formats1.

1.3 Visual Basic®
Visual Basic® is the quickest and easiest way to create applications for the Microsoft

Windows® operating system. The Visual Basic® programming system allows you to create

attractive and useful applications that fully exploit the graphical user interface (GUI). Visual

Basic® is more productive by providing appropriate tools for the different aspects of GUI

development.

The graphical user interface can be created for the application by drawing objects in a

graphical way. It’s simply a matter of setting the properties on these objects to refine their

appearance and behavior. The second step is to make this interface react to the user by

writing code that responds to events that occur in the interface. Using Visual Basic® the user

can create powerful, full-featured applications. Some of these features are (Microsoft®

Corporation, (1995b)):

1 A network capability is essential for developing a multi-user, single session support system.

 3

Chapter 6 AutoTEMP© - The Automated TEMP Generator

• Data access features that allow you to create databases and front-end applications for most

popular database formats, in particular Microsoft® Access.

• Object Linking and Embedding (OLE) allows the user to use the functionality provided by

other applications, such as Microsoft® Word for Windows® word processor, Microsoft®

Excel spreadsheet, and Microsoft® Project project planning system.

• The completed application is a true .EXE (executable) file that uses a run-time Dynamic

Link Library (DLL) that the user can freely distribute.

1.3.1 Working with Visual Basic® 4.0
Originally the author began with Visual Basic® version 3.0, professional edition, and

Windows® for Workgroups 3.11 as the software platform, this combination however, was

superseded with the release of Windows® 95 and Visual Basic® version 4.0, professional

edition, so as to keep up with the technology and not to mention the additional features in

both of these software packages. An outline of some of the new features in Visual Basic® 4.0,

professional edition are (Microsoft® Corporation, (1995b):

• OLE custom controls

• Insertable projects as controls

• Development environment extensibility

• Conditional compilation

• Settable fonts and font sizes

• Menu and toolbar negotiation

• Improved debug window

• Data access object (DAO)

• New data-bound controls

• 32-bit support

• Microsoft Jet 2.5 and Microsoft Jet 3.0 databases

• TabStrip control

• Toolbar control

• StatusBar control

• ProgressBar control

• TreeView control

• ImageList control

 4

Chapter 6 AutoTEMP© - The Automated TEMP Generator

• Slider control

1.3.2 Steps to Creating a Visual Basic® Application
There are three main steps to creating an application for Windows® in Visual Basic®

(Microsoft Corporation, 1995b):

1. Create the interface.

2. Set properties.

3. Write code.

1.3.2.1 Creating the Interface
Forms are the foundation for creating the interface of an application. You can create forms to

add windows and dialog boxes to your application. You can also use them as containers for

items that are not a visible part of the application’s interface. For example, you can have a

form in your application that serves as a container for graphics that you plan to display in

other forms.

The first step in building a Visual Basic® application such as AutoTEMP©, is to create the

forms that will be the basis for that application’s interface. Then you draw the objects that

make up the interface on the forms you create.

1.3.2.2 Setting Properties
The next step is to set properties for the objects that have been created. The Properties

window provides an easy way to set the properties for all objects on a particular form.

1.3.2.3 Writing Code
The Code window is where the Visual Basic® code for the application is written. Code

consists of language statements, constants, and declarations. Using this code window, you

can view and edit any of the code in the application.

1.3.2.4 Creating Event Procedures
Code in any Visual Basic® application is divided into smaller blocks called procedures. An

event procedure, contains code that is executed when an event occurs (such as when a user

clicks a button). An event procedure for a control combines the control’s actual name

(specified in the Name property), an underscore(_), and the event name. For example, if you

want a command button named Command1 to invoke an event procedure when it is clicked,

then you use the event procedure Command1_Click, and so on.

 5

Chapter 6 AutoTEMP© - The Automated TEMP Generator

1.3.3 Structure of a Visual Basic® Application
All applications can contain several different types of files, such as (Microsoft® Corporation,

(1995b)):

• Form modules (.FRM) contain the visual elements of a form, including all the control on

the form and Basic code associated with that form.

• Standard (.BAS) and class (.CLS) modules contain Basic code.

• Custom controls (.VBX or .OCX) include specialised controls, as well as enhanced

versions of standard controls.

• A single resource file (.RES) contains strings and bitmaps used by the application.

1.3.3.1 How an Event-Driven Application Works
An event is an action recognised by a form or control. Event-driven applications execute

Basic code in response to an event. Each form and control in Visual Basic® has a predefined

set of events. If any one of these events occurs, Visual Basic® invokes the code in the

associated event procedure as mentioned previously.

Although objects in Visual Basic® automatically recognises a predefined set of events, you

determine if and how they respond to a particular event. When you want a control to respond

to an event, you write event procedure code for that event.

Many objects recognise the same event, although different objects can execute different event

procedures when the event occurs. For example, if a user clicks a form, the Form_Click event

procedure executes; similarly, if a user clicks a command button named Command1, the

Command1_Click event procedure executes. This is what happens in a typical event-driven

application such as AutoTEMP© (Microsoft® Corporation, 1995b):

1. The application starts and the startup form is automatically loaded and displayed.

2. A form or control receives an event. The event can be caused by the user (for example, a

keystroke), by the system, or indirectly by your code (for example, a Load event when

your code loads a form).

3. If there is an event procedure corresponding to that event, it executes.

4. The application waits for the next event.

 6

Chapter 6 AutoTEMP© - The Automated TEMP Generator

1.3.3.2 Event Driven vs. Traditional Programming
In a traditional or “procedural” application, the application itself rather than an event controls

the portions of code that execute. Execution starts with the first line of executable code (like

a line-by-line assembler) and follows a defined path through the application, calling

procedures as needed.

In event-driven programs, a user action or system event executes an event procedure. Thus,

the order in which your code executes depends on which events occur, which in turn depends

on what the user does. This is essence of graphical user interfaces and event-driven

programming: The user is in charge, and your code responds.

1.4 A Description of AutoTEMP©
The AutoTEMP© CSCI is primarily designed to aid in the automatic generation of TEMP’s,

however, in order to accomplish this task, it required a minimum of two modules, one for

entering the data needed to fill the contents of the TEMP document, as well as a separate

module for automatically generating it. An additional module was also included, this is a

tutorial of the US phased acquisition process, of which is described in chapter 4, section 4.2.3.

These three modules are depicted in Figure 1-1.

The header screen that the user sees once AutoTEMP has been invoked is depicted in Figure

1-2, as is evident from the three options to which module the user wishes to enter, under the

File menu.

 7

Chapter 6 AutoTEMP© - The Automated TEMP Generator

 8

The tutorial presents the user with a walk through user-friendly graphical software medium

for educating oneself with testing and the PAP as well as the TEMP format. It is best to begin

this tutorial by pressing the Mission Need Button, read the text and continue with Phase 0,

right through to Phase IV, or similarly in an ad hoc fashion, pressing any button on the screen

will provide information on the topic. You will notice that some words in the text are

coloured green, and some blue.

1.4.1.1 Features of Module I

This CSCI module was developed as a means of educating ARDU personnel about the Phased

Acquisition Process (PAP) which also encapsulates a concise description of the Australian

CEPMAN 1 TEMP format as per chapter 5, and Appendix VI. The US version was chosen at

the time as this was the best documented literature on the PAP and reasons as mentioned

previously in the earlier chapters of this dissertation.

1.4.1 Module I - US Defence Phased Acquisition Process Tutorial

Automated T&E Master Plan Generator
CSCI (AutoTEMP Beta 2.0)

US Phased
Acquisition Process

Tutorial Module

TEMP Generator
Module

Phase I Phase IIIPhase II

Microsoft Word
Macro Module

Windows 95

Visual Basic Professional 4.0

Microsoft Word 7.0

Microsoft Access 2.0

Structure Query Language (SQL)

Dynamic Link Libraries (DLL’s)

Object Linking & Embedding (OLE)

Figure 1-1 (AutoTEMP© Beta 2.0 CSCI Module Reticulation)

AutoTEMP© - The Automated TEMP Generator

 9

Figure 1-2 (AutoTEMP© Header Form)

Chapter 6

Chapter 6 AutoTEMP© - The Automated TEMP Generator

By simply clicking on the green entries which represent hyperlinks2 the software will provide

other information about that entry. The hypertext entries or words are easy to locate, because

first of all they are green and underlined, and second, the cursor changes from a pointer to a

hand with the index finger over the text. This particular user screen (known as forms in

Visual Basic®) referred to as the Module I “Home Page (HP)” is depicted in Figure 1-4. With

reference to Figure 1-2, once the user has selected the first option, under the file menu, they

will be presented with a help screen, and pre-tutorial information, such as instructions,

background, as well as the option for printing this form. This introductory form is shown in

Figure 1-3.

Simply by clicking with the left mouse button on any of the buttons shown on the menu bar,

apart from the print and close buttons, which will print and close this form respectively, this

will open new forms about that button pressed, similar to the one depicted in Figure 1-3.

Figure 1-3 (Module I Introductory Form)

2 Hypertext is a method of presenting information where selected words in the text can be “expanded” at any time to provide

other information about the word. That is, these words are links (known as Hyperlinks) to other documents, which may be
text, files, pictures, anything (Krol, 1992).

 10

Chapter 6 AutoTEMP© - The Automated TEMP Generator

 11

In order to instigate the tutorial, and load up the PAP Home Page, you simply press the Start

Tutorial button with the icon of the US flag (clearly illustrating that this tutorial is Primarily

US based, the exception being the TEMP information and format) as depicted in Figure 1-3.

The form depicted in Figure 1-4, presents the user with a number of options, they can either

press buttons and educate themselves by reading, what the author refers to as on-line reading,

or they have the option of printing the text shown on the form and reading the hard copy in

their own leisure. So it really does depend on the liking of the person using the software.

The user knows whether they have “visited” a particular site (one of the button on the form in

Figure 1-4) because the colour of the button changes from grey to purple, this is one of the

user-friendly features of this module. The five phases, phase 0 to IV present the user with a

comprehensive description of that phase with hyperlinks embedded that will guide you to

other topics, and then a summary of this information. For illustrative purposes Phase II and

the summary forms are depicted in Figure 1-5 and Figure 1-6 respectively.

AutoTEMP© - The Automated TEMP Generator

 12

Figure 1-4 (Module I Home Page)

Chapter 6

Chapter 6 AutoTEMP© - The Automated TEMP Generator

Figure 1-5 (Phase II - EMD Form)

As is evident from the above diagram, there are also scroll bars in each form, that allow the

user to scroll down the form as it is being read, and also gives it versatility in its

development3. In Figure 1-4, some of the other user-friendly features of this module are the

Contents, Glossary, and History options under the Help menu.

3 A handy 16-bit Control box (.VBX) of Visual Basic® known as Multitext.vbx, of which the author downloaded from one of

the many Visual Basic® pages on the Internet, incorporates this facility.

 13

Chapter 6 AutoTEMP© - The Automated TEMP Generator

Figure 1-6 (Phase II - EMD Summary Form)

The Contents form lists all possible forms that the user could open of which there are 49 of

them. Figure 1-7 shows all the possible forms that could be opened whilst Module I is active.

 Acquisition Program Baseline (APB)
 Air Force Operational Test & Evaluation Centre (AFOTEC)
 Availability of Test Schedules
 Background
 Beyond Low-Rate Initial Production (BLRIP)
 Capital Equipment Procurement Manual (CEPMAN)
 Criticality Levels for Test & Evaluation
 Developmental Operational Test & Evaluation (DT&E)
 Early Operational Assessment (EOA)
 Five Types of Test & Evaluation
 Follow-on Operational Test & Evaluation (FOTE)
 Independent Validation & Verification (IV&V)

 14

Chapter 6 AutoTEMP© - The Automated TEMP Generator

 Initial Operational Test & Evaluation (IOTE)
 Instructions
 Integrated Program Summary (IPS)
 Introduction
 Lethality
 Live Fire Test & Evaluation (LFT&E)
 Logistic Support Analysis (LSA)
 Low-Rate Initial Production (LRIP)
 Milestone 0 - Concept Studies Approval
 Milestone 1 - Concept Demonstration Approval
 Milestone 2 - Development Approval
 Milestone 3 - Production Approval
 Milestone 4 - Major Modifications Approval (As required)
 Mission Need Statement (MNS)
 Operational Assessment (OA)
 Operational Test & Evaluation (OT&E)
 Operational Test Agency (OTA)
 Phase 0 - Concept Exploration and Definition (CE)
 Phase 0 - Summary
 Phase 1 - Demonstration and Validation (DEM/VAL)
 Phase 1 - Summary
 Phase 2 - Engineering and Manufacturing Development (EMD)
 Phase 2 - Summary
 Phase 3 - Production and Deployment (PD)
 Phase 3 - Summary
 Phase 4 - Operations & Support (OS)
 Phase 4 - Summary
 Production Acceptance Test & Evaluation (PATE)
 Test & Evaluation Master Plan (TEMP)
 Test & Evaluation Master Plan (TEMP) Format
 Test & Evaluation Master Plan (TEMP) Update
 Testing and the Phased Acquisition Process
 Triangle of Measurement & Instrumentation and Test & Evaluation
 Types and Applications of Test & Evaluation
 Under the Office of the Secretary of Defence (OSD)
 Verification & Validation (V&V)
 Vulnerability

Figure 1-7 (Module I Contents)

The Glossary form, depicted in Figure 1-8, is designed so that the user can easily choose the

letter of the alphabet (in the Index box) that the particular acronym or abbreviation starts with,

press the letter which is a button and the software will then give you a list of all the acronyms

or abbreviations that start with that letter. It is then simply a matter of clicking on the

hypertext acronym or abbreviation, and the software will show you the meaning of the word

in the right text box as is shown in Figure 1-8. As well as having the capability to scroll

 15

Chapter 6 AutoTEMP© - The Automated TEMP Generator

down as the user sees fit, the user can obtain a hard copy of the list of acronyms and

abbreviations, of which there are approximately 100 (all that the tutorial uses), by hitting the

Print List button.

Figure 1-8 (Module I Glossary Form)

The history form depicted in Figure 1-9, has some intelligent software code encrypted in it

that keeps a track of what forms are open, and allows you to quickly invoke a form that was

opened during the tutorial. This feature was incorporated so as help the user navigate through

the tutorial with some ease and direction, considering the 50 or so forms that can be opened at

any one time.

 16

Chapter 6 AutoTEMP© - The Automated TEMP Generator

 17

Finally, as mentioned previously, the major modification to US PAP in Figure 1-4, is the

TEMP format, it outlines the Australian CEPMAN 1 format as per Appendix VI, and also

incorporates Annex A and B to Chapter 14, part2 of CEPMAN 1 (Australian DoD, 1995),

which are the Types and Applications of T&E as well as a description of the TEMP format,

respectively. The TEMP Format form is illustrated in Figure 1-10.

Annex B in Figure 1-10 is the description of the TEMP format according to the CEPMAN 1

(Australian DoD, 1995), and is depicted in Figure 1-11.

Figure 1-10 (Module I TEMP Format Form)

Figure 1-9 (Module I Help History Form)

AutoTEMP© - The Automated TEMP Generator

 18

Figure 1-11 (CEPMAN 1 - Annex B Form)

Chapter 6

Chapter 6 AutoTEMP© - The Automated TEMP Generator

Figure 1-12 illustrates Annex A of CEPMAN 1, using hyperlinks and a contents page, which

once clicked on invoke information on that topic. It also allows you to print the form, the

hard copy of which would look exactly like the figure.

Figure 1-12 (CEPMAN 1 - Annex A Form)

1.4.2 Module II - TEMP Generator
This module is designed to allow the user to enter the necessary data required to fill the

TEMP document, and hence in doing so populate the database used to store the data.

1.4.2.1 Features of Module II
This module follows a similar format with that of the of the previous module, so as to stay in

“synch” and not confuse the user. That is to say, it is also a hyperlinked operated CSCI. In

order to activate this module it is simply a matter of selecting the “TEMP Generator Module”

under the File menu of Figure 1-2. This will invoke a similar introductory screen as that

shown in Figure 1-3. This form is illustrated in Figure 1-13.

 19

Chapter 6 AutoTEMP© - The Automated TEMP Generator

Figure 1-13 (Module II Introductory Form)

For those user’s or in particular ARDU personnel who are quite literate on the PAP, they

don’t have to start with module I, and rather skip to module II, “dive into the deep end” and

begin entering data. In the advent of this occurring the author has included the TEMP Format

button as is shown in the menu bar, which invokes that information from module I, as is

illustrated in Figure 1-11.

By pressing the “Start TEMP Generator” button shown in Figure 1-13, the software launches

the form shown in Figure 1-14. This form allows the user to enter all their personal

particulars as is shown4. Each TEMP created is assigned a default TEMP ID integer. In

order to create a new TEMP you simply click on the “Create New TEMP” button, this action

increments the TEMP ID Number by one and goes to the next record in the AutoTEMP©

database.

4 This form is also explained in section 11 of Annex I in Appendix VI (Description and Format of the T&E Master Plan)

 20

Chapter 6 AutoTEMP© - The Automated TEMP Generator

The author has created some “dummy” TEMP’s and populated the database for demonstration

purposes. As is evident there are three dummy TEMP’s shown, namely HTS, Submarine

Mark III, and Falcon Air Fighter - 56, all of which are dummy names. By pressing the “Load

Previous TEMPs” button, this will acknowledge all TEMPs previously written in the text box

to the right of the Comments text box. By selecting the TEMP that needs to be updated or

what have you, simply by clicking on the appropriate one, this will display this form with that

record of information, much like a pointer does in a stack.

Figure 1-14 (Module II User Information Form)

Once the user has finished filling out this form, pressing the “OK” button will invoke this

modules Home Page shown in Figure 1-15. This form is a hypertext Contents page of the

TEMP format conceptualised in chapter 5, Figure 5-7 and is summarised in Table 5-1. This

form also has the History and Glossary help facilities of module I, as well as the capability of

invoking the user information form at any time to see which TEMP is being developed.

 21

Chapter 6 AutoTEMP© - The Automated TEMP Generator

 22

Another form distinguishing sections 1.5 and 1.6 respectively is shown in Figure 1-17. This

form allows the user to choose the hardware type of the system, and thus in doing so

automatically assigns suitable Required Technical Characteristics for the user. For

demonstration purposes the author has conveniently chosen Computers. These characteristics

are clearly defined in Table 1-1 of Annex I in Appendix VI.

There is no other way to learn about the software and in particular this module without trying

it out for oneself, however, for demonstration purposes, certain forms will be briefly analysed

pertaining to the progression of Figure 1-15. Section 1.4 is illustrated in Figure 1-16. This

form prompts the user to enter the thresholds for the operational effectiveness and suitability

characteristics with the help of a calculator and definitions of each characteristic, imposed on

the user. You’ll notice that, the form also a “TEMP Format” button, this button invokes the

Australian CEPMAN 1 TEMP format description at the position of the particular section of

the form, in this case section 1.4.

It is now a matter of invoking each section one at a time, and filling out each sub-section

aspiring to that section of the TEMP.

Figure 1-15 (Module II Home Page)

AutoTEMP© - The Automated TEMP Generator

 23

Figure 1-16 (Section 1.4 - Matrix of Required Operational Characteristics Form)

Chapter 6

Chapter 6 AutoTEMP© - The Automated TEMP Generator

Figure 1-17 (Section 1.5 & 1.6 - Required Technical Characteristics & Critical T&E Issues Form)

As is evident the TabStrip Control is made use of in this form so as to incorporate more than

one section on the one form. This 16-bit control box (.OCX) has decreased the amount of

design time considerably, especially considering all the sub-sections of a document like a

TEMP, it would of have implied a separate form for every sub-section, and meant a very

tedious module development stage, and even more so a very difficult task for the user entering

the data, having to change, open and close a form each time.

Another typical form for entering data is that of section 3.0, illustrated in Figure 1-18. This

form would of had to be broken up into 6 individual forms, had the TabStrip Control not been

used. This form shows section 3.2.2 selected for data entry.

 24

Chapter 6 AutoTEMP© - The Automated TEMP Generator

 25

The final form that is of interest is section 7.2.4, illustrated in Figure 1-19. It details all the

test phases and allows the user to enter the date, test site and test system for that phase. The

test system column, uses a control known as a DBCombo Box Control. Simply put, the

programmer can fill it with predefined text options, and hence the user can choose any one of

these options, in this case, a Unix Workstation, IBM PC, or a Macintosh, to fill in that box.

However, this type of control cannot learn, i.e., can be updated during run-time, only during

design-time. There are other controls that incorporate this facility.

Figure 1-18 (Section 3.0 - DT&E Outline Form)

AutoTEMP© - The Automated TEMP Generator

 26

Figure 1-19 (Section 7.2.4 - Test Sites Form)

Chapter 6

Chapter 6 AutoTEMP© - The Automated TEMP Generator

1.4.2.2 Communication Mechanisms
As is insinuated in Figure 1-1, all the three modules communicate with other applications

such as Microsoft® Word 7.0 for the development of the TEMP document via the use of Word

macros, and Microsoft Access® 2.0 for the storage and access of data entered by the user

needed to fill the TEMP document. The mechanisms used for this communication is

Dynamic Data Exchange (DDE), Object Linking and Embedding (OLE) Automation, and

Structure Query Language (SQL). These three mechanisms are defined and discussed in the

following sections.

1.4.2.2.1 Dynamic Data Exchange

As described by Microsoft Press (1994), DDE is a mechanism supported by Microsoft®

applications in Windows that enables two applications to “talk” to each other. DDE

automates the manual cutting and pasting of information between applications, providing a

faster vehicle for updating information. More specifically, DDE essentially provides three

capabilities (based on Microsoft Press (1994):

• You can request information from an application. For example, in a DDE conversation

with Microsoft Access®, Word or Visual Basic® macro can request the contents of a

record or range of records in a Microsoft Access® database.

• You can send information to an application. In a DDE conversation with Microsoft

Access®, a Word or Visual Basic® macro can send text to a record or a range of records in

that database.

• You can send commands to an application. For example, in a DDE conversation with

Microsoft Access®, a Word or Visual Basic® macro can send a command to open a

database from which it wants to request information. Commands sent an application must

be in a form the application can recognise.

The Microsoft Press (1994) also states that two applications exchange information by

engaging in a DDE conversation. In a DDE conversation, the application that initiates and

controls the conversation is the client and the application that responds is the server. The role

of the client and server application is best described by Figure 1-20. Each conversation is

identified by a separate channel number.

 27

Chapter 6 AutoTEMP© - The Automated TEMP Generator

CLIENT
APPLICATION

SERVER
APPLICATION

• Initiates Conversation

• Sends Commands

• Requests Information

• Sends Information

• Ends Conversation

• Carries out Commands

• Supplies Information

• Accepts InformationDDE Channel

Figure 1-20 (The Roles of the Client and Server Applications in DDE (based on Microsoft Press (1994))

A key requirement for a DDE conversation is that both applications be running. If an

application is not running, a client can not initiate a DDE conversation with it. For that

reason, a macro that initiates a DDE conversation usually includes instruction’s that carry out

the following three steps (Microsoft Press, 1994):

1. Determine whether the application you want to talk to is running.

2. Start the application if it is not already running.

3. Initiate the DDE conversation.

1.4.2.2.2 Object Linking and Embedding

OLE Automation is a protocol (Microsoft Press, 1994) to replace DDE. As with DDE, an

application can use OLE automation to share data or control another application.

Microsoft Press (1994) also states that in OLE automation, Word provides another application

(called the “container” application) with an object - a unit of information similar to a topic in

DDE. Word supports a single object called “Basic” for OLE automation. You use the

“Basic” object to send WordBasic instructions to Word. The technique is similar to sending

commands to Word through DDE, the difference being with OLE automation, WordBasic

instructions can return numbers or strings directly to the container application.

 28

Chapter 6 AutoTEMP© - The Automated TEMP Generator

This makes it possible to use the WordBasic instructions as an extension of the container

application’s macro or programming language5.

1.4.2.2.3 Structured Query Language

The Structured Query Language (SQL) as stated by the Microsoft Press (1994) is an industry-

standard database language used by the Microsoft Jet database engine. SQL is a database

programming language with origins closely connected to the invention of the relational

database by E.F. Codd in the early 1970’s. Modern SQL has evolved into a widely used

standard for relational databases, and is defined by the American National Interchange

Standard (ANSI).

The SQL language is composed of commands, clauses, operators, and aggregate functions.

These elements are combined into statements used to create, update, and manipulate

databases. SQL provides both Data Definition Language (DLL) and Data Manipulation

Language (DML) commands. Although there are some areas of overlap, the DDL commands

allow you to create and define new databases, fields, and indexes, while the DML commands

allow you to build queries to sort, filter, and extract data from the database.

The Microsoft Jet database engine provides two separate methods for accomplishing most

database tasks (Microsoft Press, 1994):

• A navigational model that is based on moving around directly in the database records.

• A relational model that is based on the Structured Query Language.

Thus, the beauty of SQL is that you can implement software routines for the manipulation of

the data entered by the user, such as sorting, collecting, filtering, in two or three lines, as

opposed to pages of code to carry out the same task. Of the many areas that SQL was made

use of, it was particularly used to implement the routines to search and locate the personal

particulars record of data that belongs to the TEMP title chosen by the user to modify or

create, in the user information form of Figure 1-14.

5 It is important to note that Word can provide an object to another application for OLE automation, but it cannot use OLE

automation to access objects in other applications. In other words, applications that support OLE automation, such as
Visual Basic®, which can use OLE automation to access Word, but Word cannot use OLE automation to access them. In
DDE terms, Word can act as a server for another application, but it cannot use another application as a server.

 29

Chapter 6 AutoTEMP© - The Automated TEMP Generator

1.4.3 Module III - Automating the TEMP Generator (Autotemp.doc)
The task of preparing the final TEMP document named Autotemp.doc in Microsoft® Word

7.0 (herein referred to as Word), involves acquiring the requirements (user input) from

AutoTEMP© fields which are inserted into a Microsoft Access® 2.0 (herein referred to as

Access) database file called Autotemp.mdb. Hence, automatically generating the

Autotemp.doc, the TEMP complying to the CALS conceptualised template of Figure 5-7

(detailed in Appendix VI).

The template however is not in the required Word format so as to allow for the correct DDE

to take place between Access and Word. This is due to the fact that Word requires special

Field Codes to establish the links between itself and other Windows applications, prior to the

“transaction” taking place. This Windows application data requirement acquisition process is

illustrated in Figure 1-21.

Field 1

Field 2

Field 3

Record 1

……...

Record 3

Record 2

Field N

Record N

……...

AutoTEMP Beta 2.0
(Visual Basic 4.0)

Microsoft Access 2.0
(Autotemp.mdb file)

Bookmark 1

Bookmark 2

Bookmark 3

Bookmark N

……...

Microsoft Word 7.0
(Autotemp.doc file)

SQL / DDE

SQL / OLE / DDE

USER
FINAL

DOCUMENT
OUTPUT

T&E MASTER PLAN

INPUT

Figure 1-21 (Data Requirement Procurement Process using Windows Applications)

 30

Chapter 6 AutoTEMP© - The Automated TEMP Generator

1.4.3.1 Data Requirement Procurement
Figure 1-21 illustrates that the Visual Basic® 4.0 module II communicates with Access via the

use of SQL code. It utilises DDE to store data entered by the user into fields 1 through to N

as is shown in the diagram, to the accompanying records 1 through to N in the Autotemp.mdb

database file. At this stage both VB and Access are active applications. Once the user has

successfully completed this task, then by closing all modules and going back to the header

form and pressing the “Generate TEMP using Word Macros” option under the file menu in

Figure 1-2, after a short question to double check whether or not this option was not

inadvertently chosen, AutoTEMP© opens Word and automatically loads the Autotemp.doc

document template that has the attached Word macros written in the WordBasic language

mentioned previously. At this stage Access becomes minimised along with VB and Word is

now the active application. The user is then prompted by the software telling them that the

Word menu bar will be modified to accommodate a menu option for the instigation of the

Word macros as is illustrated in Figure 1-22. The modification to the menu bar is illustrated in

Figure 1-23.

Figure 1-22 (AutoOpen Macro Menu Bar Customizer Dialog Box)

1.4.3.2 Microsoft® WordBasic
WordBasic is a structured programming language as stated by the Microsoft Press (1994)

originally modeled on the Microsoft QuickBasic language. It combines a subset of the

instructions available in standard Basic languages with statements and functions based on the

Word user interface. You can use WordBasic to modify any Word command or to write your

own, which are known as macros. These macros can be assigned to menus, toolbars, and

shortcut keys so that they look and function like regular Word commands. Word is actually

written by the use of macros, for example the menu bar facilities such as File Open, File

Close, File Save, and so forth, are all sub-macros that are executed automatically each time

the user invokes them.

 31

Chapter 6 AutoTEMP© - The Automated TEMP Generator

Figure 1-23 (Word Menu Bar Modification)

The only documentation apart from on-line help in Word (which is quite comprehensive), for

writing Word macros is the Microsoft® Word Developer’s Kit by Microsoft Press (1994), and

is essentially considered as an accessory to Word, as opposed for using Word simply as a

Word processor. The advantage of WordBasic over other languages and applications that

could of have been used to construct the Autotemp.doc TEMP document is that VB also uses

a Basic language almost identical in structure and syntax, hence the ease and compatibility

whilst programming.

WordBasic allows the user to write and/or record complex macros, and the ability to insert

many file types using DDE and OLE automation as described previously, including Access

(.MDB) database files.

 32

Chapter 6 AutoTEMP© - The Automated TEMP Generator

1.4.3.3 Word Macro Facility
A number of macros, approximately 150, have been written by the author, that are attached to

this document whenever it is opened. Figure 1-23 shows some of the Autotemp.doc

document, by choosing the Macro option under the Tools menu bar, you can access these

macros. This action prompts the “Macro dialog box” as is shown in Figure 1-24.

Figure 1-24 (AutoTEMP Macro Dialog Box)

Figure 1-24 illustrates that all of these 150 macros are available in the Autotemp.dot template

file, which is a template containing the macros with extension .DOT as opposed to .DOC for

normal Word files. The diagram illustrates the selection of the “AutoTEMPGenerator”

macro. This macro is the “main program” that initiates all other sub-macros corresponding to

all sections of the Autotemp.doc document, of which there are seven, to carry out the

appropriate DDE and OLE automation actions between the Access database file,

Autotemp.mdb and the Word file Autotemp.doc. A table of all the macros filenames and their

descriptions in Autotemp.dot in chronological order, i.e., the order that they are executed, are

listed in Figure 1 of Annex I in Appendix IV. Word incorporates macros that run

automatically, these are listed along with their description in Table 1-1. AutoTEMP© utilises

the “AutoOpen” and “AutoClose” macros. These are the macros that automatically install

and un-install the AutoTEMP© menu bar modification, and open and close the Autotemp.doc

 33

Chapter 6 AutoTEMP© - The Automated TEMP Generator

document, respectively. Hence, by simply attaching them to the Autotemp.doc document

template Autotemp.dot, this causes automatic execution each time the Autotemp.doc

document is opened and closed.

MACRO NAME WHEN IT RUNS

AutoExec When you start Word

AutoNew Each time you create a new document

AutoOpen Each time you open an existing document

AutoClose Each time you close a document

AutoExit When you quit Word

Table 1-1 (Automatic Executable Macros)

A similar dialog box prompting the user that the menu bar modification will be un-installed is

executed automatically when the user closes the Autotemp.doc document, illustrated in Figure

1-25. A complete listing of all the macro routines used to generate the TEMP document

Autotemp.doc, is given in Annex II of Appendix IV.

Figure 1-25 (AutoClose Macro Menu Bar Customizer Dialog Box)

1.4.3.4 Acquisition of Requirements via the use of Bookmarks and DDE
The most useful tool Word provides for identifying discrete parts of documents is the use of

bookmarks. A simple use for bookmarks is just to mark a selection or location in a document.

You can also use bookmarks to select text between two arbitrary locations in a document.

Bookmarks are particularly useful for jumping to a specific location in a document, marking

an item so that it can be referred to in a cross-reference, or generating a range of pages for an

index entry. AutoTEMP© uses the bookmark feature in this module extensively to position

the insertion points in the Autotemp.doc document. This allows the macros to locate the

 34

Chapter 6 AutoTEMP© - The Automated TEMP Generator

particular bookmark, and insert the data from that particular record in the Access database file

Autotemp.mdb, as is illustrated in Figure 1-21, at that insertion point. This process is

continued until all the requirements, i.e., all the fields in the Autotemp.doc document are

filled. A comprehensive description of each bookmark, section number, and field names,

along with corresponding macro names is given in Figure 2 of Annex I in Appendix IV. The

macro routines are sufficiently commented so as to guide the user through their operation.

Appendix II of this dissertation contains the actual Autotemp.doc document that shows the

field codes, bookmark placements and more or less “raw” document, ready for extracting and

inserting requirements required to fill all of its fields at the specified bookmarks.

Once the user selects the “AutoTEMP Generator” option under the AutoTEMP menu item as

is illustrated in Figure 1-23, this action instigates the commencement of the “main program”

“AutoTEMPGenerator” macro, to run and begin the DDE between Access and Word, for each

section until the document Autotemp.doc is filled. At each section the user will be prompted

with a similar dialog box as that in Figure 1-25, instructing them that the next section will

commence DDE exchange and OLE automation to fill its sub-sections fields. If there is no

data to be entered into particular sections the software is instructed to fill those sections with

TBD’s, or To Be Determined. This action is demonstrated in Appendix III, which depicts a

completed TEMP filled with TBD’s, what the author would call a “dry run”. This action

demonstrates that all the macros operate accordingly, i.e., they do what their programmed to

do. Once this action has completed, that is all sections 1 through 7 and all the Appendices

have been filled, the software then updates each section with the appropriate heading

numbering, and jumps to the table of contents bookmark, and inserts a table of contents.

Finally, for the document to be complete as a draft at least, there are two very important

sections that need planning charts inserted into, these are firstly section 1.3, which requires a

diagram of the system to be inserted into, and secondly section 2.2, which requires an

integrated schedule. The integrated schedule lists the following T&E aspects, normally in the

form of a graphical planning chart:

• Milestones,

• Test article availability,

• Phases of DT&E, OT&E, PAT&E,

• Initial Operational Capability (IOC),

 35

Chapter 6 AutoTEMP© - The Automated TEMP Generator

• Full Operational Capability (FOC),

• Funding, and

• Key reports.

The user is prompted at each of these sections and informed of the above, in the case of

section 2.2, the user is also prompted with an example of what the schedule should look like

as a guide.

1.4.4 Lessons Learnt from Sample TEMP’s (Testing)
This section will briefly discuss certain problems encountered whilst developing AutoTEMP©

(DT&E) as well as those discovered during operation (OT&E), focusing on the detection of

bugs and the quality of the resulting TEMP document.

1.4.4.1 Developmental and Operational Related Software Bugs
A number of software bugs were detected within all three modules whilst developing the

CSCI AutoTEMP©. The majority of these bugs were obvious and simple to detect and hence

fixed at the time of detection. This was possible because Visual Basic® 4.0 allows two modes

of operation, namely, design mode and run mode. In run mode you have access to what is

known as a debug window. This feature was widely used as a means of debugging the

AutoTEMP© CSCI, and is described in the following section.

The bugs that were more difficult to detect were those in module III, i.e., infested within the

macros written in the Word document, Autotemp.doc. These bugs were primarily due to such

things as incorrect naming of bookmarks, and field name incompatibilities within the Access

database file, Autotemp.mdb. The only mechanisms for detecting those bugs were by trial

and error techniques, redesign, fix, test, and so forth, i.e., via thorough T&E.

Module I had some bugs and traps with the printing routines designed to print the forms or

their textual contents, especially with line feed and carriage returns, when upgrading from

Windows® 3.11 to Windows® 95. Some alterations had to be made to the font types and

sizes, as well as to the page alignment, in order to get it right, however these were “ironed-

out” in the end, and the CSCI now operates correctly.

Module II was a very tedious module to finally complete because of the vast number of

sections in the TEMP document. During its development there were certain bugs occurring

 36

Chapter 6 AutoTEMP© - The Automated TEMP Generator

due to the volume of this module with respect to, for example, the user information form. The

SQL code used in this form would not access the appropriate record aspiring to the current

TEMP that the user had supposedly chosen, as well as assigning the incorrect TEMP ID

number. Being new to the SQL programming language, this took longer than the author

originally intended to debug, but through the use of the debug window, described in the

proceeding section, this was eventually solved, by tracking the operation of the code, line by

line.

Module III is now quite “bug-free” and Word no longer detects any operational errors, syntax

errors, and so forth, and as previously mentioned all the information captured in the Access

database, Autotemp.mdb, is correctly placed into the appropriate insertion points in the Word

document, Autotemp.doc, as required.

1.4.4.1.1 Debug Window in Visual Basic®

The Debug window automatically opens at run time (the time when code is running). In

break mode6 you can use the Debug window to execute individual lines of code, view or

change values of variables (a named storage location that can contain data that can be

modified during program execution) and properties, and view watch expressions (a user

defined expression that allows you to observe the behavior of a variable or expression). At

run time, you can use it to display data or messages as the program runs. At design time, the

time at which you build an application in the building environment by adding controls, setting

control or form properties, and so on, you can view previous output to the Debug window, but

you can not execute code.

1.4.4.2 User Related Problems
As stated previously, AutoTEMP© provides the user with a direct link to the TEMP format

specified by the CAL compliant CEPMAN 1 instruction (Australian DoD, 1995), with the

click of a button, on each form at the appropriate section, as well as a walk through tutorial on

the United States Phased Acquisition Process, module I, not to mention a history and glossary

form, again easily accessed by the press of a button. This enabled the user’s to be directed to

their particular form, backtrack, or acronym/abbreviation that they desired, as well as a

reference to the most asked question, “well what should I write in this section ?”. Most user’s

6 Temporary suspension of program execution while in the development environment. In break mode you can examine,

debug, reset, step, or continue program execution.

 37

Chapter 6 AutoTEMP© - The Automated TEMP Generator

simply wanted to explore for themselves, by simply clicking this button or that button,

printing a form, looking up an acronym, using each module in turn and in reverse.

This is all very well when there is only one TEMP document to worry about. However, the

biggest user related problem was when the user had created more than one TEMP, using the

user information form, Figure 1-14, say three or four, and attempted to navigate through each

TEMP, and attempting to build one or more TEMP documents. This was due to the simple

fact that they would literally get lost, and simply would not know which TEMP their currently

working on and which TEMP record would be used to build the TEMP document, the first ?,

the second ?, and so forth. This problem was anticipated by the author, and still requires

some thinking. From such lessons learnt through all these sample tests, and OT&E, it was

clear that the software needed some work in this area, and would have to be looked at within

the next version of AutoTEMP©.

It should be noted at this stage, that the software written, namely, AutoTEMP© Beta 2.0, is

intended solely for the demonstration of concepts, that is, the ability to conceptualise and

automatically generate a TEMP from a functional requirement specification, and not as a

commercial piece of software. Perhaps a later version, with some appropriate funding or

sponsorship from a defence related agency, would incorporate protuberant commercially

viable modifications and additions.

1.4.4.3 Quality of the Final TEMP Document
The quality of the final TEMP document produced by AutoTEMP©, ideally can only be as

good as the conceptualisation of the TEMP model or template allows it to be. Merz (1995)

states as per The Prince, Machiavelli:

“It must be remembered that there is nothing more difficult to plan, more
doubtful of success, nor more dangerous to manage than the creation of a new
system. For the initiator has the enmity of all who would profit by the
preservation of the old institution and merely lukewarm defenders in those who
would gain by the new one.”

One can only say that the effectiveness of this software in increasing the efficiency, and

decreasing the time and cost in generating a TEMP has by far been accomplished, however,

the fruits of the author’s labor has still yet to be seen, in the eyes of the lukewarm defenders

 38

Chapter 6 AutoTEMP© - The Automated TEMP Generator

who will gain even greater quality by the next version. It must be remembered that, this work

can only be appropriately compared to that of the work of Roth (1994), with his Automated

Test Planning System (ATPS) software, that is reviewed and analysed in chapter 5. In a nut

shell Roth’s ATPS software does not produce a formatted draft TEMP, but simply a skeleton

in the form of a text document with answers entered by the user to a number of questions, that

would aid in the development of a TEMP. However, on the same token it incorporates a Test

and Evaluation Program Risk Assessment module that looks at the possibility of risk

involved, in the T&E process, that AutoTEMP© does not. One can argue that this was not

part of the original objectives of the software.

 39

	1. AutoTEMP(- The Automated TEMP Generator
	1.1 Summary
	1.2 AutoTEMP(CSCI Requirements
	1.2.1 The Selection of the CSCI Development Software
	1.2.2 Computer Resource Requirements
	1.2.2.1 Computer Software Requirements
	1.2.2.2 Computer Hardware Requirements

	1.3 Visual Basic(
	1.3.1 Working with Visual Basic(4.0
	1.3.2 Steps to Creating a Visual Basic(Application
	1.3.2.1 Creating the Interface
	1.3.2.2 Setting Properties
	1.3.2.3 Writing Code
	1.3.2.4 Creating Event Procedures

	1.3.3 Structure of a Visual Basic(Application
	1.3.3.1 How an Event-Driven Application Works
	1.3.3.2 Event Driven vs. Traditional Programming

	1.4 A Description of AutoTEMP(
	1.4.1 Module I - US Defence Phased Acquisition Process Tutorial
	1.4.1.1 Features of Module I

	1.4.2 Module II - TEMP Generator
	1.4.2.1 Features of Module II
	1.4.2.2 Communication Mechanisms
	1.4.2.2.1 Dynamic Data Exchange
	1.4.2.2.2 Object Linking and Embedding
	1.4.2.2.3 Structured Query Language

	1.4.3 Module III - Automating the TEMP Generator (Autotemp.doc)
	1.4.3.1 Data Requirement Procurement
	1.4.3.2 Microsoft(WordBasic
	1.4.3.3 Word Macro Facility
	1.4.3.4 Acquisition of Requirements via the use of Bookmarks and DDE

	1.4.4 Lessons Learnt from Sample TEMP’s (Testing)
	1.4.4.1 Developmental and Operational Related Software Bugs
	1.4.4.1.1 Debug Window in Visual Basic(

	1.4.4.2 User Related Problems
	1.4.4.3 Quality of the Final TEMP Document

